精英家教網 > 高中數學 > 題目詳情
11.將十進制數69轉化為二進制數:69(10)1000101(2)

分析 利用“除k取余法”是將十進制數除以2,然后將商繼續(xù)除以2,直到商為0,然后將依次所得的余數倒序排列即可得到答案.

解答 解:69÷2=34…1
34÷2=17…0
17÷2=8…1
8÷2=4…0
4÷2=2…0
2÷2=1…0
1÷2=0…1
故69(10)=1000101 (2)
故答案為:1000101.

點評 本題考查的知識點是十進制與其它進制之間的轉化,其中熟練掌握“除k取余法”的方法步驟是解答本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

1.求下列函數的定義域:
(1)y=$\frac{\sqrt{x-2}}{x+1}$•$\sqrt{x+5}$;      
(2)y=$\frac{\sqrt{x-3}}{|x|-5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.函數$y={log_{\frac{1}{4}}}({{x^2}-4x-5})$的單調增區(qū)間是(-∞,-1).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知冪函數y=f(x)的圖象過(9,3)點,則$f(\frac{1}{3})$=( 。
A.$\sqrt{3}$B.$\frac{1}{3}$C.$\frac{1}{9}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.不等式組$\left\{\begin{array}{l}{x-y≥0}\\{x+y+2≥0}\\{2x-y-2≤0}\end{array}\right.$所確定的平面區(qū)域記為D,
(1)作出平面區(qū)域D.
(2)求(x-2)2+(y+3)2的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.為了對某研究性課題進行研究,用分層抽樣方法從某校高中各年級中,抽取若干名學生組成研究小組,有關數據見表(單位:人)     
(1)求x,y;
(2)若從高一、高二抽取的人中選2人作專題發(fā)言,求這2人都來自高一的概率.
年 級相關人數抽取人數
高一54x
高二362
高三18y

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.值域是(0,+∞)的函數是( 。
A.y=x2-x+1B.y=2xC.y=x+1D.y=log2x

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.函數f(x)=$\frac{1}{\sqrt{3}}$sin2x-cos2x取得最大值時,x=kπ+$\frac{5π}{12}$,k∈Z.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知函數g(x)=(x3-x)f(x)是偶函數,則函數f(x)可能是( 。
A.1B.|x|C.x+$\frac{1}{x}$D.x2

查看答案和解析>>

同步練習冊答案