【題目】在中,角的對邊分別為,已知且.
(1)求角;
(2)求的面積的最大值.
【答案】(1)(2)2
【解析】
(1)根據(jù)二倍角公式得到4cos2C-4cosC+1=0即(2cosC-1)2=0,進(jìn)而得到角C的值;(2)根據(jù)余弦定理得到a2+b2-8=ab,根據(jù)重要不等式得到ab≤8,代入面積公式即可.
(1)由8sin2 +4sin2C=9得:4(1-cos(A+B))+4sin2C=9
整理得:4cos2C-4cosC+1=0即(2cosC-1)2=0,
所以,cosC= ,
C =;
(2)由余弦定理可得:cosC==,又c=2,
所以,a2+b2-8=ab
又a2+b2≥2ab,得到不等式ab≤8,當(dāng)且僅當(dāng)a=b時(shí)等號成立,
所以△ABC的面積:S△ABC=absinC=ab≤2,
△ABC的面積的最大值為2。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EB=,EF=1,BC=,且M是BD的中點(diǎn)。
(1)求證:EM∥平面ADF;
(2)求二面角D-AF-B的余弦值;
(3)在線段ED上是否存在一點(diǎn)P,使得BP∥平面ADF?若存在,求出EP的長度;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為保障公平性,高考時(shí)每個(gè)考點(diǎn)都要安裝手機(jī)屏蔽儀,要求在考點(diǎn)周圍1千米處不能收到手機(jī)信號,如圖,檢查員抽查某市一考點(diǎn),以考點(diǎn)正西千米的處開始為檢查起點(diǎn),沿著一條北偏東方向的公路,以每小時(shí)12千米的速度行駛,并用手機(jī)接通電話,問從起點(diǎn)開始計(jì)時(shí),最長經(jīng)過多少分鐘檢查員開始收不到信號(點(diǎn)開始),并至少持續(xù)多長時(shí)間(之間)該考點(diǎn)才算檢查合格?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)的圖象, 只需將函數(shù)的圖象( )
A. 所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.
B. 所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.
C. 所有點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.
D. 所有點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在區(qū)間上的兩個(gè)函數(shù)和,如果對任意的,均有不等式成立,則稱函數(shù)與在上是“友好”的,否則稱為“不友好”的.
(1)若,,則與在區(qū)間上是否“友好”;
(2)現(xiàn)在有兩個(gè)函數(shù)與,給定區(qū)間.
①若與在區(qū)間上都有意義,求的取值范圍;
②討論函數(shù)與與在區(qū)間上是否“友好”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(其中t為參數(shù)),在以原點(diǎn)O為極點(diǎn),以軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.
(1)求直線的普通方程及曲線的直角坐標(biāo)方程;
(2)設(shè)是曲線上的一動點(diǎn), 的中點(diǎn)為,求點(diǎn)到直線的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:,直線過定點(diǎn).
(1)若與圓相切,求的方程;
(2)若與圓相交于兩點(diǎn),線段的中點(diǎn)為,又與的交點(diǎn)為,判斷是否為定值.若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,,其中e為自然對數(shù)的底數(shù).
求函數(shù)的單調(diào)區(qū)間;
求證:;
若恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com