已知q(x),g(x)均為R上的奇函數(shù),若函數(shù)f(x)=aq(x)+bg(x)+1在(0,+∞)上有最大值5,則f(x)在(-∞,0)上有


  1. A.
    最小值-5
  2. B.
    最小值-2
  3. C.
    最小值-3
  4. D.
    最大值-5
C
分析:由函數(shù)f(x)和g(x)都為奇函數(shù),可知函數(shù)F(x)=f(x)-1=af(x)+bg(x)是奇函數(shù),再根據(jù)函數(shù)f(x)在(0,+∞)上有最大值5,可知F(x)在(0,+∞)上有最大值,根據(jù)奇函數(shù)的圖象關(guān)于原點(diǎn)對稱,可知f(x)在(-∞,0)上的最值,從而求得F(x)在(-∞,0)上有最值.
解答:設(shè)F(x)=aq(x)+bg(x),
∵q(x),g(x)均為R上的奇函數(shù),
則F(-x)=-F(x).
∴F(x)是奇函數(shù),且它在(0,+∞)上有最大值5-1=4,
根據(jù)對稱性,它在(-∞,0)上有最小值:-4,
則f(x)在(-∞,0)上有最小值:-4+1=-3.
故選:C.
點(diǎn)評:考查函數(shù)的奇偶性,解決有關(guān)函數(shù)奇偶性的命題,一般是把要求區(qū)間上的問題轉(zhuǎn)化到已知區(qū)間上求解,體現(xiàn)了轉(zhuǎn)化的思想方法,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、已知q(x),g(x)均為R上的奇函數(shù),若函數(shù)f(x)=aq(x)+bg(x)+1在(0,+∞)上有最大值5,則f(x)在(-∞,0)上有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)當(dāng)a=-2時(shí),函數(shù)F(x)=f(x)-g(x)在其定義域范圍是增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)x>1時(shí),證明f(x)>h(x)成立;
(3)記函數(shù)f(x)與g(x)的圖象分別是C1、C2,C1、C2相交于不同的兩點(diǎn)P,Q,過線段PQ的中點(diǎn)R作垂直于x軸的垂線,與C1、C2分別交于M、N,問是否存在點(diǎn)R,使得曲線C1在M處的切線與曲線C2在N處的切線平行?若存在,試求出R點(diǎn)的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知q(x),g(x)均為R上的奇函數(shù),若函數(shù)f(x)=aq(x)+bg(x)+1在(0,+∞)上有最大值5,則f(x)在(-∞,0)上有(  )
A.最小值-5B.最小值-2C.最小值-3D.最大值-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊門市鐘祥市高三(上)11月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)a=-2時(shí),函數(shù)F(x)=f(x)-g(x)在其定義域范圍是增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)x>1時(shí),證明f(x)>h(x)成立;
(3)記函數(shù)f(x)與g(x)的圖象分別是C1、C2,C1、C2相交于不同的兩點(diǎn)P,Q,過線段PQ的中點(diǎn)R作垂直于x軸的垂線,與C1、C2分別交于M、N,問是否存在點(diǎn)R,使得曲線C1在M處的切線與曲線C2在N處的切線平行?若存在,試求出R點(diǎn)的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊門市鐘祥市高三(上)11月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)a=-2時(shí),函數(shù)F(x)=f(x)-g(x)在其定義域范圍是增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)x>1時(shí),證明f(x)>h(x)成立;
(3)記函數(shù)f(x)與g(x)的圖象分別是C1、C2,C1、C2相交于不同的兩點(diǎn)P,Q,過線段PQ的中點(diǎn)R作垂直于x軸的垂線,與C1、C2分別交于M、N,問是否存在點(diǎn)R,使得曲線C1在M處的切線與曲線C2在N處的切線平行?若存在,試求出R點(diǎn)的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

同步練習(xí)冊答案