已知數(shù)列是公差不為零的等差數(shù)列,,且的等比中項.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的前項和為,試問當為何值時,最大?并求出的最大值.
(1) ;(2) 當且僅當時,取得最大值

試題分析:(1) 設(shè)出等差數(shù)列的公差,利用的等比中項列方程求出公差而得通項公式.
(2)根據(jù)等差數(shù)列的前項和公式求出,從而得出并化簡,最后結(jié)合的特點,用函數(shù)的方法或不等式的方法求出的最大值.
試題解析:解:(1)設(shè)等差數(shù)列的公差為,則       2分
的等比中項
,即      3分

                                     4分
                            5分
(2)由(1)可得                       6分


                             8分

                10分
當且僅當,即時,取得最大值.            12分項和公式;2、等比中項的性質(zhì);3、基本不等式的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知各項都不相等的等差數(shù)列的前6項和為60,且的等比中項.
(1) 求數(shù)列的通項公式;
(2) 若數(shù)列滿足,且,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列滿足).
(1)若數(shù)列是等差數(shù)列,求它的首項和公差;
(2)證明:數(shù)列不可能是等比數(shù)列;
(3)若,),試求實數(shù)的值,使得數(shù)列為等比數(shù)列;并求此時數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項和Sn滿足Snan n-1=2(n∈N*),設(shè)cn=2nan.
(1)求證:數(shù)列{cn}是等差數(shù)列,并求數(shù)列{an}的通項公式.
(2)按以下規(guī)律構(gòu)造數(shù)列{bn},具體方法如下:
b1c1,b2c2c3,b3c4c5c6c7,…,第nbn由相應(yīng)的{cn}中2n-1項的和組成,求數(shù)列{bn}的通項bn

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等差數(shù)列的前n項和為,且,則(    )
A.8B.9C.1 0D.11

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在等差數(shù)列中,,,則該數(shù)列前20項的和為____.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列為等差數(shù)列,,那么數(shù)列的通項公式為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若等差數(shù)列滿足,則公差______;______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等差數(shù)列中,,則該數(shù)列前13項的和是(   )
A.13B.26 C.52D.156

查看答案和解析>>

同步練習冊答案