13.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2+3x-1,則當(dāng)x<0時(shí),f(x)的解析式為f(x)=f(x)=-x2+3x+1.

分析 當(dāng)x<0時(shí),-x>0,由已知表達(dá)式可求得f(-x),由奇函數(shù)的性質(zhì)可得f(x)與f(-x)的關(guān)系,從而可求出f(x).

解答 解:當(dāng)x<0時(shí),-x>0,
則f(-x)=(-x)2+3(-x)-1=x2-3x-1.
又f(x)是R上的奇函數(shù),所以當(dāng)x<0時(shí)f(x)=-f(-x)=-x2+3x+1.
故答案為:f(x)=-x2+3x+1.

點(diǎn)評 本題考查函數(shù)解析式的求解及奇函數(shù)的性質(zhì),屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=lg(x-1)+lg(x-2)的定義域?yàn)镸,函數(shù)y=lg(x2-3x+2)的定義域?yàn)镹,則 ( 。
A.M?NB.N?MC.M=ND.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)實(shí)數(shù)a≤2,已知函數(shù)f(x)=$\frac{a+a(2-a)^{2}}{ax-{x}^{2}}$,x∈(0,a),若存在a,x0,使得f(x0)≤2,則x0的取值集合為{1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知平面直角坐標(biāo)系xOy中,已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點(diǎn)和上頂點(diǎn)分別為A,B,橢圓的離心率為$\frac{\sqrt{3}}{2}$,且過點(diǎn)(1,$\frac{\sqrt{3}}{2}$).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,若直線l與該橢圓交于點(diǎn)P,Q兩點(diǎn),直線BQ,AP的斜率互為相反數(shù).
①求證:直線l的斜率為定值;
②若點(diǎn)P在第一象限,設(shè)△ABP與△ABQ的面積分別為S1,S2,求$\frac{{S}_{1}}{{S}_{2}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列結(jié)論正確的是( 。
A.若A=R,B=(0,+∞),則f:x→|x|是集合A到集合B的函數(shù)
B.若A={x|0≤x≤4},B={y|0≤y≤3},則f:y=$\frac{2}{3}$x是集合A到集合B的映射
C.函數(shù)的圖象與y軸至少有1個(gè)交點(diǎn)
D.若y=f(x)是奇函數(shù),則其圖象一定經(jīng)過原點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知角α的頂點(diǎn)與原點(diǎn)O重合,始邊與x軸的正半軸重合,若它的終邊經(jīng)過點(diǎn)P(2,3),則$tan({2α+\frac{π}{4}})$=( 。
A.$-\frac{7}{17}$B.$\frac{17}{7}$C.$-\frac{12}{5}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在正方體ABCD一A1B1C1D1中,四對異面直線,AC與A1D,BD1與AD,A1C與AD1,BC與AD1,其中所成角不小于60°的異面直線有(  )
A.4對B.3對C.2對D.1對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n-1.?dāng)?shù)列{bn}滿足b1=2,bn+1-2bn=8an
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明:數(shù)列$\{\frac{b_n}{2^n}\}$為等差數(shù)列,并求{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合A={x|log2x<8},B={x|$\frac{x+2}{x-4}$<0},C={x|a<x<a+1}.
(1)求集合A∩B;
(2)若B∪C=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案