若(x+1)4(x+4)8=a0(x+3)12+ a1(x+3)11+ a2(x+3)10+…+ a11(x+3)+a12,則log2(a1+a3+a5+…+a11)=(     ).       

A.27              B.28             C.8             D.7

 

【答案】

 解析:令x=-2, 則a0+ a1+ a2+…+ a11+a12=28

令x=-4,則a0-a1+ a2-…-a11+a12=0,

兩式相加得2(a1+a3+a5+…+a11)= 28,a1+a3+a5+…+a11= 27.故選D.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列選項(xiàng)敘述錯(cuò)誤的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•廣州二模)已知函數(shù)f(x)=
(x+1)4+(x-1)4(x+1)4-(x-1)4
(x≠0).
(Ⅰ)若f(x)=x且x∈R,則稱x為f(x)的實(shí)不動(dòng)點(diǎn),求f(x)的實(shí)不動(dòng)點(diǎn);
(Ⅱ)在數(shù)列{an}中,a1=2,an+1=f(an)(n∈N*),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此

解:因?yàn)楹瘮?shù)沒(méi)有零點(diǎn),所以方程無(wú)根,則函數(shù)y=x+|x-c|與y=2沒(méi)有交點(diǎn),由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)

(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱有一個(gè)巧合,求巧合數(shù)的分布列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(x+1)4(x+4)8=a0(x+3)12+ a1(x+3)11+ a2(x+3)10+…+ a11(x+3)+a12,則log2(a1+a3+a5+…+a11)=(     ).        

A.27              B.28             C.8             D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案