如圖,四棱錐P-ABCD中,底面ABCD為菱形,PD=AD,∠DAB=60°,PD⊥底面ABCD.
(1)求證AC⊥PB;
(2)求PA與平面PBC所成角的正弦值.
分析:(1)要證AC⊥PB,可以通過證明AC⊥面PDB實現(xiàn),而后者可由AC⊥BD,AC⊥PD證得.
(2)求出A到平面PBC的距離為h(可以利用等體積法),再與PA作比值,即為PA與平面PBC所成角的正弦值.
解答:(1)證明∵底面ABCD為菱形,∴AC⊥BD,
∵PD⊥底面ABCD,∴AC⊥PD,
∵BD∩PD=D,∴AC⊥面PDB,
∵PB?面PDB∴AC⊥PB.
(2)解:設(shè)PD=AD=1,設(shè)A到平面PBC的距離為h,
則由題意PA=PB=PC=
2
,S△ABC=
1
2
×
3
×
1
2
=
3
4

在等腰△PBC中,可求S△PBC=
1
2
×1×
(
2
)
2
(
1
2
)
2
=
7
4

∴V A-PBC=V P-ABC,
1
3
×h×
7
4
=
1
3
×1×
3
4
,h=
21
7

∴sinθ=
h
PA
=
21
7
2
=
42
14
點評:本題考查空間直線和直線垂直的判定.線面角求解.考查空間想象、推理論證能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點.求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點.
(1)求證:AD⊥PB;
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求證:PD⊥AC;
(2)在棱PA上是否存在一點E,使得二面角E-BD-A的大小為45°,若存在,試求
AE
AP
的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點F是PB中點.
(Ⅰ)若E為BC中點,證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點,證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,設(shè)PC與AD的夾角為θ.
(1)求點A到平面PBD的距離;
(2)求θ的大;當平面ABCD內(nèi)有一個動點Q始終滿足PQ與AD的夾角為θ,求動點Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案