16.在區(qū)間[0,1]上任取兩個實數(shù)a,b,則函數(shù)f(x)=x2+ax+b2無零點的概率為(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{4}$

分析 函數(shù)f(x)=x2+ax+b2無零點的條件,得到a,b滿足的條件,利用幾何概型的概率公式求出對應的面積即可得到結論.

解答 解:∵a,b是區(qū)間[0,1]上的兩個數(shù),
∴a,b對應區(qū)域面積為1×1=1
若函數(shù)f(x)=x2+ax+b2無零點,
則△=a2-4b2<0,對應的區(qū)域為直線a-2b=0的上方,
面積為1-$\frac{1}{2}×1×\frac{1}{2}$=$\frac{3}{4}$,
則根據幾何概型的概率公式可得所求的概率為$\frac{3}{4}$.
故選:B.

點評 本題主要考查幾何概型的概率計算,根據二次函數(shù)無零點的條件求出a,b滿足的條件是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.下列四個命題中真命題為( 。
A.lg(x2+1)≥0B.5≤2C.若x2=4,則x=2D.若x<2,則$\frac{1}{x}$>$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)$f(x)=\frac{x^2}{2}-klnx,k>0$的單調增區(qū)間為$({\sqrt{k},+∞})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)$f(x)=\frac{a}{x}+({1-a})x$(其中a為非零實數(shù)),且方程$xf({\frac{1}{x}})=4x-3$有且僅有一個實數(shù)根.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)證明:函數(shù)f(x)在區(qū)間(0,+∞)上單調遞減.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.直三棱柱ABC-A1B1C1的各頂點都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,則此球的表面積等于( 。
A.20πB.10πC.D.5$\sqrt{5}$π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某校100名學生期中考試語文成績的頻率分布直方圖如下圖所示,其中成績分組區(qū)間是[50,60),[60,70),[70,80),[80,90),[90,100].
(Ⅰ)求圖中a的值;
(Ⅱ)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應分數(shù)段的人數(shù)(y)之比如表所示,求數(shù)學成績在[50,90)之外的人數(shù).
分數(shù)段[50,60)[60,70)[70,80)[80,90)
x:y1:12:13:44:5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.一個幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是(  )
A.4cm2B.$\frac{43}{2}$cm2C.23cm2D.24cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.過拋物線y2=4x的焦點作一條直線與拋物線相交于A,B兩點,它們的橫坐標之和等于3,則這樣的直線( 。
A.有且僅有一條B.有且僅有兩條C.有無窮多條D.不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)y=ex(e是自然對數(shù)的底數(shù))在點(0,1)處的切線方程是(  )
A.y=x-1B.y=x+1C.y=-x-1D.y=-x+1

查看答案和解析>>

同步練習冊答案