【題目】已知:橢圓 (a>b>0),過點 , 的直線傾斜角為 ,原點到該直線的距離為 .
(1)求橢圓的方程;
(2)斜率大于零的直線過 與橢圓交于E,F兩點,若 ,求直線EF的方程.
科目:高中數學 來源: 題型:
【題目】已知具有相關關系的兩個變量之間的幾組數據如下表所示:
(1)請根據上表數據在網格紙中繪制散點圖;
(2)請根據上表提供的數據,用最小二乘法求出關于的線性回歸方程,并估計當時, 的值;
(3)將表格中的數據看作五個點的坐標,則從這五個點中隨機抽取3個點,記落在直線右下方的點的個數為,求的分布列以及期望.
參考公式: , .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的偶函數,其導函數為,若對任意的實數,都有恒成立,則使成立的實數的取值范圍為( 。
A. B. (﹣∞,﹣1)∪(1,+∞)
C. (﹣1,1) D. (﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(1+x),g(x)=loga(1﹣x)其中(a>0且a≠1),設h(x)=f(x)﹣g(x).
(1)求函數h(x)的定義域,判斷h(x)的奇偶性,并說明理由;
(2)若f(3)=2,求使h(x)<0成立的x的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的奇函數f(x),當x∈(﹣∞,0)時,f(x)=﹣x2+mx﹣1.
(1)求f(x)的解析式;
(2)若方程f(x)=0有五個不相等的實數解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC=BC=1,E是PC的中點,面PAC⊥面ABCD.
(1)證明:ED∥面PAB;
(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列是各項均為正數的等比數列,其前項和為,且.
(1)求數列的通項公式;
(2)設有正整數,使得成等差數列,求的值;
(3)設,對于給定的,求三個數經適當排序后能構成等差數列的充要條件.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com