已知橢圓的離心率為,短軸的一個端點到右焦點的距離為.
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓c交于A、B兩點,坐標(biāo)原點O到直線的距離為,求面積的最大值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線的一條漸近線與拋物線只有一個公共點,則雙曲線的離心率為(    )
A.B.5C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線上的一點軸的距離為12,則與焦點間的距離 =______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

、正方體ABCD—A1B1C1D1的側(cè)面AB1內(nèi)有一點P到直線A1B1與直線BC的距離相等如圖(1),則動點P所在曲線的形狀大致為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線,則p的值為(  )                   
A.-2B.-4C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.過點作斜率為的直線與雙曲線有兩個不同交點.
⑴求的取值范圍?
⑵是否存在斜率,使得向量與雙曲線的一條漸近線的方向向量平行.若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)圓過點P(0,2), 且在軸上截得的弦RG的長為4.

(1)求圓心的軌跡E的方程;
(2)過(0,1),作軌跡的兩條互相垂直的弦,設(shè)的中點分別為,試判斷直線是否過定點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點P到點M(-1,0)的距離與點P到點N(1,0)的距離之比為
(1)求點P到軌跡方程H;
(2)過點M做H的切線,求點N到的距離;
(3)求H關(guān)于直線對稱的曲線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F是橢圓的右焦點,橢圓上的點與點F的最大距離為M,最小距離為N,則橢圓
上與點F的距離等于的點的坐標(biāo)是                                 (   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案