【題目】已知圓與圓相外切,且與直線相切.

1)記圓心的軌跡為曲線,求的方程;

2)過點的兩條直線與曲線分別相交于點,線段的中點分別為.如果直線的斜率之積等于1,求證:直線經(jīng)過定點.

【答案】12)見解析

【解析】

1)根據(jù)拋物線定義可知圓心的軌跡為拋物線,進而可得其軌跡方程.

2)由題意可設(shè)直線的斜率為,則直線的斜率為,表示出直線的方程,聯(lián)立直線與拋物線方程即可求得交點的坐標,進而以代替點坐標中的,可得點的坐標;即可表示出直線的斜率及其方程,進而得所過定點的坐標.

1)依題意等于到直線的距離,

故所求軌跡是以為焦點,以為準線的拋物線.

故其軌跡的方程為.

2)依題意直線斜率都存在且均不為,

故設(shè)直線的斜率為,則直線的斜率為.

直線的方程為

即為.

消去整理得,

所以,點的坐標為,

代替點坐標中的,可得點的坐標為

所以直線的斜率,

所以直線的方程為

.

經(jīng)過定點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】業(yè)務技能測試是量化考核員工績效等級的一項重要參考依據(jù).某公司為量化考核員工績效等級設(shè)計了AB兩套測試方案,現(xiàn)各抽取名員工參加AB兩套測試方案的預測試,統(tǒng)計成績(滿分分),得到如下頻率分布表.

成績頻率

方案A

方案B

1)從預測試成績在的員工中隨機抽取人,記參加方案A的人數(shù)為,求的最有可能的取值;

2)由于方案A的預測試成績更接近正態(tài)分布,該公司選擇方案A進行業(yè)務技能測試.測試后,公司統(tǒng)計了若干部門測試的平均成績與績效等級優(yōu)秀率,如下表所示:

根據(jù)數(shù)據(jù)繪制散點圖,初步判斷,選用作為回歸方程.令,經(jīng)計算得,

(ⅰ)若某部門測試的平均成績?yōu)?/span>,則其績效等級優(yōu)秀率的預報值為多少?

(ⅱ)根據(jù)統(tǒng)計分析,大致認為各部門測試平均成績,其中近似為樣本平均數(shù),近似為樣本方差,求某個部門績效等級優(yōu)秀率不低于的概率為多少?

參考公式與數(shù)據(jù):(1,,

2)線性回歸方程中,,

3)若隨機變量,則,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是單調(diào)遞增的等差數(shù)列,a2+a414a21,a3+1a4+7成等比數(shù)列.

1)求數(shù)列{an}的通項公式;

2)設(shè)數(shù)列的前n項和為Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐的底面是邊長的菱形,,的中點是頂點在底面的射影,的中點.

(1)求證:面平面;

(2)若,求面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在幾何體中,如圖,四邊形為平行四邊形,,平面平面,平面,,.

1)求證:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當急需住院人數(shù)超過醫(yī)院所能收治的病人數(shù)量時就會發(fā)生“醫(yī)療資源擠兌”現(xiàn)象,在新冠肺炎爆發(fā)期間,境外某市每日下班后統(tǒng)計住院人數(shù),從中發(fā)現(xiàn):該市每日因新冠肺炎住院人數(shù)均比前一天下班后統(tǒng)計的住院人數(shù)增加約25%,但每日大約有200名新冠肺炎患者治愈出院,已知該市某天下班后有1000名新冠肺炎患者住院治療,該市的醫(yī)院共可收治4000名新冠肺炎患者,若繼續(xù)按照這樣的規(guī)律發(fā)展,該市因新冠肺炎疫情發(fā)生“醫(yī)療資源擠兌”現(xiàn)象,只需要約( )

參考數(shù)據(jù):.

A.7B.10C.13D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

設(shè),對任意的恒成立,求整數(shù)的最大值;

求證:當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】動圓過定點,且在軸上截得的弦的長為4.

1)若動圓圓心的軌跡為曲線,求曲線的方程;

2)在曲線的對稱軸上是否存在點,使過點的直線與曲線的交點滿足為定值?若存在,求出點的坐標及定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線上的點到點的距離比到直線的距離小,為坐標原點.

1)過點且傾斜角為的直線與曲線交于、兩點,求的面積;

2)設(shè)為曲線上任意一點,點,是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長恒為定值?若存在,求出的方程和定值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案