若函數(shù)上的導(dǎo)函數(shù)為,且不等式恒成立,又常數(shù),滿足,則下列不等式一定成立的是        .
;②;③;④.

試題分析:令.,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022720983750.png" style="vertical-align:middle;" />,所以,即上是增函數(shù).由,即,所以.所以①成立,③不成立;再令.所以
,因?yàn)椴荒艽_定是否大于0,所以單調(diào)性不能確定,即不知道的大小關(guān)系,所以②④不一定成立.因此本題填①.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間。設(shè),試問(wèn)函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),且.
(1)求函數(shù),的表達(dá)式;
(2)當(dāng)時(shí),不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)(是常數(shù))在處的切線方程為,且.
(Ⅰ)求常數(shù)的值;
(Ⅱ)若函數(shù)()在區(qū)間內(nèi)不是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù) .
(1)若.
(2)若函數(shù)上是增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知
(1)若時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;
(3)令是否存在實(shí)數(shù),當(dāng)是自然對(duì)數(shù)的底)時(shí),函數(shù)的最小值是3,
若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,且在區(qū)間內(nèi)存在極值,求整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

方程x3-3x=k有3個(gè)不等的實(shí)根, 則常數(shù)k的取值范圍是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖是函數(shù)的導(dǎo)函數(shù)的圖象,對(duì)此圖象,有如下結(jié)論:

①在區(qū)間(-2,1)內(nèi)是增函數(shù);
②在區(qū)間(1,3)內(nèi)是減函數(shù);
③在時(shí),取得極大值;
④在時(shí),取得極小值。
其中正確的是     

查看答案和解析>>

同步練習(xí)冊(cè)答案