【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求a的取值范圍
(3)若x∈[t,t+2],試求y=f(x)的最小值.
【答案】
(1)解:由已知,f(0)=f(2)=3,可得對(duì)稱軸為x=1,
則函數(shù)的定點(diǎn)坐標(biāo)為(1,1),
設(shè)f(x)=a(x﹣1)2+1,a>0,由f(0)=3,得a=2,
故f(x)=2x2﹣4x+3
(2)解:因?yàn)楹瘮?shù)的對(duì)稱軸為1,f(x)在區(qū)間[2a,a+1]上不單調(diào)
對(duì)稱軸在區(qū)間[2a,a+1]內(nèi),即2a<1<a+1,
解得0<a<
(3)解:當(dāng)t≥1時(shí),函數(shù)f(x)在[t,t+2]上單調(diào)遞增,f(x)min=f(t)=2t2﹣4t+3.
當(dāng)t<1<t+2時(shí),即﹣1<t<1時(shí),f(x)min=1,
當(dāng)t+2≤1時(shí),即t≤﹣1時(shí),函數(shù)f(x)在[t,t+2]上單調(diào)遞減,f(x)min=f(t+2)=2t2+4t+5,
綜上所述y=f(x)min=g(t)=
【解析】(1)根據(jù)二次函數(shù)f(x)的最小值為1,且f(0)=f(2)可得對(duì)稱軸為x=1,可設(shè)f(x)=a(x﹣1)2+1,由f(0)=3,求出a的值即可;(2)f(x)在區(qū)間[2a,a+1]上不單調(diào),則2a<1<a+1,解得即可;(3)通過(guò)討論t的范圍,得到函數(shù)的單調(diào)性,從而求出函數(shù)的最小值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)討論函數(shù)極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(2)若, 恒成立,求的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x2﹣kx﹣4在區(qū)間[﹣2,4]上具有單調(diào)性,則k的取值范圍是( )
A.[﹣8,16]
B.(﹣∞,﹣8]∪[16,+∞)
C.(﹣∞,﹣8)∪(16,+∞)
D.[16,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若, , 是互不重合的直線, , , 是互不重合的平面,給出下列命題:
①若, , ,則或;
②若, , ,則;
③若不垂直于,則不可能垂直于內(nèi)的無(wú)數(shù)條直線;
④若, , , ,則且;
⑤若, , 且, , ,則, , .
其中正確的命題是__________.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列每組函數(shù)是同一函數(shù)的是( )
A.f(x)=x0與f(x)=1
B.f(x)= ﹣1與f(x)=|x|﹣1
C.f(x)= 與f(x)=x﹣2
D.f(x)= 與f(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分14分)已知遞增等差數(shù)列中的是函數(shù)的兩個(gè)零點(diǎn).?dāng)?shù)列滿足,點(diǎn)在直線上,其中是數(shù)列的前項(xiàng)和.
(1)求數(shù)列和的通項(xiàng)公式;
(2)令,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中國(guó)詩(shī)詞大會(huì)》是中央電視臺(tái)最近新推出的一檔有重大影響力的大型電視文化節(jié)目,今年兩會(huì)期間,教育部部長(zhǎng)陳寶生答記者問(wèn)時(shí)給予其高度評(píng)價(jià)。基于這樣的背景,山東某中學(xué)積極響應(yīng),也舉行了一次詩(shī)詞競(jìng)賽。組委會(huì)在競(jìng)賽后,從中抽取了100名選手的成績(jī)(百分制),作為樣本進(jìn)行統(tǒng)計(jì),作出了圖中的頻率分布直方圖,分析后將得分不低于60分的學(xué)生稱為“詩(shī)詞達(dá)人”,低于60分的學(xué)生稱為“詩(shī)詞待加強(qiáng)者”.
(Ⅰ)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“詩(shī)詞達(dá)人”與性別有關(guān)?
詩(shī)詞待加強(qiáng)者 | 詩(shī)詞達(dá)人 | 合計(jì) | |
男 | 15 | ||
女 | 45 | ||
合計(jì) |
(Ⅱ)將頻率視為概率,現(xiàn)在從該校大量參與活動(dòng)的學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“詩(shī)詞達(dá)人”的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、數(shù)學(xué)期望和方差.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來(lái)越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車每次租時(shí)間不超過(guò)兩小時(shí)免費(fèi),超過(guò)兩個(gè)小時(shí)的部分每小時(shí)收費(fèi)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙兩人獨(dú)立來(lái)該租車點(diǎn)騎游(各組一車一次).設(shè)甲、乙不超過(guò)兩小時(shí)還車的概率分別為, ;兩小時(shí)以上且不超過(guò)三小時(shí)還車的概率分別為, ;兩人租車時(shí)間都不會(huì)超過(guò)四小時(shí).
(1)求甲、乙兩人所付租車費(fèi)用相同的概率;
(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求的分布列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com