精英家教網 > 高中數學 > 題目詳情

【題目】已知全集U=R,函數 的定義域為集合A,函數y=log2(x+2)的定義域為集合B,則集合(CUA)∩B=

【答案】(﹣2,﹣1]
【解析】解:函數y= 中x+1>0,解得:x>﹣1,

∴A=(﹣1,+∞),又全集U=R,

∴CUA=(﹣∞,﹣1],

函數y=log2(x+2)中x+2>0,解得:x>﹣2,

∴B=(﹣2,+∞),

則(CUA)∩B=(﹣2,﹣1].

所以答案是:(﹣2,﹣1]

【考點精析】利用交、并、補集的混合運算對題目進行判斷即可得到答案,需要熟知求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,拋物線關于x軸對稱,它的頂點在坐標原點,點P(1,2),A(x1 , y1),B(x2 , y2)均在拋物線上.

(1)寫出該拋物線的方程及其準線方程;
(2)當PA與PB的斜率存在且傾斜角互補時,求y1+y2的值及直線AB的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,平面四邊形ABCD中,AB= ,AD=2 ,CD= ,∠CBD=30°,∠BCD=120°.

(1)求BD的長;
(2)求∠ADC的度數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以圓x2+y2﹣2x﹣2y﹣1=0內橫坐標與縱坐標均為整數的點為頂點的三角形的個數為(
A.76
B.78
C.81
D.84

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=ax2+bx﹣3在x=1處取得極值,且在(0,﹣3)點處的切線與直線2x+y=0平行. (Ⅰ)求f(x)的解析式;
(Ⅱ)求函數g(x)=xf(x)+4x的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C1的參數方程為 (t為參數),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2 sin(θ+ ). (Ⅰ)求曲線C1與曲線C2的普通方程;
(Ⅱ)若點P的坐標為(﹣1,3),且曲線C1與曲線C2交于B,D兩點,求|PB||PD|.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知關于x的方程:x2+2(a﹣1)x+2a+6=0.
(Ⅰ)若該方程有兩個不等實數根,求實數a的取值范圍;
(Ⅱ)若該方程有兩個不等實數根,且這兩個根都大于1,求實數a的取值范圍;
(Ⅲ)設函數f(x)=x2+2(a﹣1)x+2a+6,x∈[﹣1,1],記此函數的最大值為M(a),最小值為N(a),求M(a),N(a)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)的離心率e= ,并且經過定點P( , ). (Ⅰ)求橢圓E的方程;
(Ⅱ)問是否存在直線y=﹣x+m,使直線與橢圓交于A、B兩點,滿足OA⊥OB,若存在求m值,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD⊥平面PAB.
(1)求證:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.

查看答案和解析>>

同步練習冊答案