分析 btanA,ctanB,btanB成等差數(shù)列,可得2ctanB=btanA+btanB,利用正弦定理化為cosA=$\frac{1}{2}$,因為由A∈(0,π),即可得出A=$\frac{π}{3}$.
解答 解:在△ABC中,∵btanA,ctanB,btanB成等差數(shù)列,
∴2ctanB=btanA+btanB,
∴2sinC•$\frac{sinB}{cosB}$=sinB•$\frac{sinA}{cosA}$+sinB•$\frac{sinB}{cosB}$,
化為sinAcosB+cosAsinB=2sinCcosA,
∴sinC=2sinCcosA,
∴cosA=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$.
故答案是:$\frac{π}{3}$.
點評 本題考查了等差數(shù)列的性質(zhì)、正弦定理、數(shù)量積運算、倍角公式、兩角和差的正弦公式、三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 18 | B. | 99 | C. | 198 | D. | 297 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 最大值為-$\frac{1}{2}$ | B. | 最小值為-$\frac{1}{2}$ | C. | 最大值為1 | D. | 最小值為1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12π | B. | $6\sqrt{3}π$ | C. | 9π | D. | 18π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,2) | B. | (-∞,0) | C. | (1,+∞) | D. | (1,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com