在直角坐標系內,到點(1,0)和直線x=-1距離相等的點的軌跡方程是
 
考點:軌跡方程
專題:計算題,圓錐曲線的定義、性質與方程
分析:由拋物線的定義可得,軌跡是以點(1,0)為焦點,以直線x=-1為準線的拋物線,即可寫出拋物線方程.
解答: 解:在平面直角坐標系xOy中,到點(1,0)和直線x=-1距離相等的動點的軌跡是以點(1,0)為焦點,以直線x=-1為準線的拋物線,
∴p=2,
故拋物線方程為y2=4x,
故答案為:y2=4x.
點評:本題考查拋物線的定義、標準方程,以及簡單性質的應用,判斷軌跡是以點(1,0)為焦點,以直線x=-1為準線的拋物線,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖①,在平面內,ABCD是∠BAD=60°且AB=a的菱形,ADMA1和CDNC1都是正方形. 將兩個正方形分別沿AD,CD折起,使M與N重合于點D1.設直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(圖②).
(1)求證:不管點E如何運動都有CE∥面ADD1;
(2)當線段BE=
3
2
a時,求二面角E-AC-D1的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當k取什么值時,不等式2kx2+kx-
3
8
<0
對一切實數(shù)都成立?
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,E是棱CC1的中點,F(xiàn)是側面BCC1B1內的動點,且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

動點P到直線x+5=0的距離減去它到點M(4,0)的距離等于1,則P的軌跡方程
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1中,直線DB1與平面ABCD所成角的正弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=sin(ωx+
π
2
)(ω>0)
的最小正周期為π,則f(x)( 。
A、在(0,
π
2
)
單調遞減
B、在(
π
4
,
4
)
單調遞減
C、在(0,
π
2
)
單調遞增
D、在(
π
4
,
4
)
單調遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為
3
,以頂點A為球心,2為半徑作一個球,則圖中球面與正方體的表面相交所得到的兩段弧長之和等于(  )
A、
6
B、
3
C、π
D、
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-3sin2x-cos2x+2

(Ⅰ)求f(x)的最大值;
(Ⅱ)若△ABC的內角A,B,C的對邊分別為a,b,c,且滿足
b
a
=
3
,
sin(2A+C)
sinA
=2+2cos(A+C)
,求f(B)的值.

查看答案和解析>>

同步練習冊答案