【題目】設(shè)函數(shù)

1)求函數(shù)fx)在x[1,2]上的最大值和最小值;

2)若對于任意x[12]都有fx)<m成立,求實數(shù)m的取值范圍.

【答案】1)最大值為7,最小值為;(2

【解析】

1)函數(shù)求導(dǎo)得3x2x2=(3x+2)(x1),(xR),易知在區(qū)間(﹣1,),(1,2)上,0,在區(qū)間(,1)上,0,從而求得函數(shù)的極值,再計算給定區(qū)間的端點函數(shù)值,其中最大的為最大值;最小的為最小值.

2)對于任意x[1,2]都有fx)<m成立,只需要fxmaxm即可.

1fx)=3x2x2=(3x+2)(x1),(xR),

因為在區(qū)間(﹣1),(12)上,0,

所以fx)單調(diào)遞增,

因為在區(qū)間(,1)上,0

所以fx)單調(diào)遞減,

所以fx極大值f,fx極小值f1,

又因為f(﹣1,f2)=7

所以fx)在x[1,2]上的最大值為7,最小值為.

2)若對于任意x[1,2]都有fx)<m成立,

則只需要fxmaxm即可,

由(1)知,fx)在x[12]上的最大值為7,

所以m7.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處取得極小值

(1)求實數(shù)的值;

(2)設(shè),討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,△DAB≌△DCB,E為線段BD上的點,且EAEBEDAB,延長CEAD于點F

1)若GPD的中點,求證平面PAD⊥平面CGF

2)若ADAP6,求平面BCP與平面DCP所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1F2為橢圓Ey21的左、右焦點,過點P(﹣2,0)的直線l與橢圓E有且只有一個交點T

1)求F1TF2的面積;

2)求證:光線被直線反射后經(jīng)過F2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式|x1|+|2x+1|3的解集為{x|axb}

1)求a,b的值;

2)若正實數(shù)x,y滿足x+yab+2且不等式(yc24x+8cx1y≤0對任意的xy恒成立,求實數(shù)c的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線的參數(shù)方程為,為參數(shù),在以坐標原點為極點,x軸非負半軸為極軸的極坐標系中,曲線的極坐標方程為

寫出的普通方程和的直角坐標方程;

相交于AB兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是直角梯形,,,且.是線段上一點,且.

1)求證:平面平面.

2)若,在線段上是否存在一點,使得到平面的距離為?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是由個有序?qū)崝?shù)構(gòu)成的一個數(shù)組,記作:.其中稱為數(shù)組的“元”,稱為的下標,如果數(shù)組中的每個“元”都是來自數(shù)組中不同下標的“元”,則稱的子數(shù)組.定義兩個數(shù)組,的關(guān)系數(shù)為.

1)若,設(shè)的含有兩個“元”的子數(shù)組,求的最大值;

2)若,,且,的含有三個“元”的子數(shù)組,求的最大值;

3)若數(shù)組中的“元”滿足,設(shè)數(shù)組含有四個“元”,且,求的所有含有三個“元”的子數(shù)組的關(guān)系數(shù))的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,的中點.

1)證明:

2)若點在線段上,且直線與平面所成角的正弦值為,求直線所成角的余弦值.

查看答案和解析>>

同步練習冊答案