【題目】對(duì)于實(shí)數(shù)a、b、c,有下列命題:①若a>b,則ac<bc;②若ac2>bc2,則a>b;③若a<b<0,則a2>ab>b2;④若c>a>b>0,則;⑤若a>b,,則a>0,b<0.其中正確的是________.(填寫序號(hào))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=的圖象與函數(shù)y=2sinπx(﹣2≤x≤4)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于( 。
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓,離心率,短軸,拋物線頂點(diǎn)在原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,焦點(diǎn)為,
(1)求橢圓和拋物線的方程;
(2)設(shè)坐標(biāo)原點(diǎn)為,為拋物線上第一象限內(nèi)的點(diǎn),為橢圓是一點(diǎn),且有,當(dāng)線段的中點(diǎn)在軸上時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:函數(shù)f(x)=lg(﹣mx2+2x﹣m)的定義域?yàn)镽;
命題q:函數(shù)g(x)=4lnx+ ﹣(m﹣1)x的圖象上任意一點(diǎn)處的切線斜率恒大于2,
若“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用6種顏色給右圖四面體A﹣BCD的每條棱染色,要求每條棱只染一種顏色且共頂點(diǎn)的棱染不同的顏色,則不同的染色方法共有( )種.
A.4080
B.3360
C.1920
D.720
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的方程為x2=2py(p>0),過點(diǎn)A(0,﹣1)作直線l與拋物線相交于P,Q兩點(diǎn),點(diǎn)B的坐標(biāo)為(0,1),連接BP,BQ,設(shè)QB,BP與x軸分別相交于M,N兩點(diǎn).如果QB的斜率與PB的斜率的乘積為﹣3,則∠MBN的大小等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1,F2分別為雙曲線的左、右焦點(diǎn),A1,A2分別為這個(gè)雙曲線的左、右頂點(diǎn),P為雙曲線右支上的任意一點(diǎn).求證:以A1A2為直徑的圓既與以PF2為直徑的圓外切,又與以PF1為直徑的圓內(nèi)切.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com