已知函數(shù)f(x)=lnx,g(x)=
1
2
x2-2x
(1)設(shè)h(x)=f(x+1)-g(x)(其中g(shù)′(x)是g(x)的導(dǎo)函數(shù)),求h(x)的最大值;
(2)設(shè)k∈Z,當(dāng)x>1時(shí),不等式k(x-l)<xf (x)+3g′(x)+4恒成立,求k的最大值.
(1)h(x)=f(x+1)-g′(x)=ln(x+1)-x+2,(x>-1)
所以h′(x)=
1
x+1
-1=
-x
x+1
,當(dāng)-1<x<0時(shí),h′(x)>0;當(dāng)x>0時(shí),h′(x)<0.
因此,h(x)在(-1,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減.
故當(dāng)x=0時(shí),h(x)取得最大值h(0)=2.
(2)∵xf(x)+3g′(x)+4=xlnx+3(x-2)+4=xlnx+3x-2,
∴當(dāng)x>1時(shí),不等式k(x-1)<xf(x)+3g′(x)+4可化為
k<
xlnx+3x-2
x-1
=
xlnx+x
x-1
+2
,所以不等式轉(zhuǎn)化為k<
xlnx+x
x-1
+2
對(duì)任意x>1恒成立.
令p(x)=
xlnx+x
x-1
+2
,則p′(x)=
x-lnx-2
(x-1)2
,令r(x)=x-lnx-2(x>1),則r′(x)=1-
1
x
=
x-1
x
>0
所以r(x)在(1,+∞)上單調(diào)遞增.因?yàn)閞(3)=3-ln3-2=1-ln3<0,r(4)=4-ln4-2=2-2ln2>0,
所以r(x)=0在(1,+∞)上存在唯一實(shí)根x0,且滿(mǎn)足x0∈(3,4),
當(dāng)1<x<x0時(shí),r(x)<0,即p′(x)<0;當(dāng)x>x0時(shí),r(x)>0,即p′(x)>0.
所以函數(shù)p(x)=
xlnx+x
x-1
+2
在(1,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增,又r(x0)=x0-lnx0-2=0,所以lnx0=x0-2.
所以[p(x)]min=p(x0)=
x0lnx0+x0
x0-1
+2
=
x0(lnx0+1)
x0-1
+2
=
x0(x0-2+1)
x0-1
+2
=x0+2∈(5,6),
所以k<[p(x)]min=x0+2∈(5,6)
故整數(shù)k的最大值是5.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱(chēng)直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱(chēng)直線AB存在“中值伴侶切線”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線l,使得l為曲線C的對(duì)稱(chēng)軸?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案