已知F1、F2為雙曲線C:x2-y2=2的左、右焦點(diǎn),點(diǎn)P在C上,|PF1|=2|PF2|,則cos∠F1PF2=(  )
分析:根據(jù)雙曲線的定義,結(jié)合|PF1|=2|PF2|,利用余弦定理,即可求cos∠F1PF2的值.
解答:解:設(shè)|PF1|=2|PF2|=2m,則根據(jù)雙曲線的定義,可得m=2
2

∴|PF1|=4
2
,|PF2|=2
2

∵|F1F2|=4
∴cos∠F1PF2=
32+8-16
2×4
2
×2
2
=
24
32
=
3
4

故選C.
點(diǎn)評(píng):本題考查雙曲線的性質(zhì),考查雙曲線的定義,考查余弦定理的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),P為雙曲線左支上任一點(diǎn),若
|PF2|2
|PF1|
的最小值為8a,則雙曲線的離心率e的取值范圍是( 。
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1,F(xiàn)2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),P為雙曲線左支上任一點(diǎn),若
|PF2|2
|PF1|
的最小值為8a,則雙曲線的離心率e的取值范圍是( 。
A.(1,+∞)B.(0,3]C.(1,3]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖北省襄樊四中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點(diǎn),P為雙曲線左支上任一點(diǎn),若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省榆林市神木中學(xué)高三(上)數(shù)學(xué)寒假作業(yè)1(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點(diǎn),P為雙曲線左支上任一點(diǎn),若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年陜西省西安市西工大附中高考數(shù)學(xué)四模試卷(文科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點(diǎn),P為雙曲線左支上任一點(diǎn),若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案