精英家教網 > 高中數學 > 題目詳情

如圖,在直三棱柱ABC-A1B1C1中,AB⊥BC,P為A1C1的中點,且AB=BC=kPA,

(1)當k=1時,求證:PA⊥B1C;

(2)若E為BC中點,當k為何值時,異面直線PA與C1E所成的角的正弦值為

答案:
解析:

  (1)(方法一)連結,因為中點,

  所以

  又因為面,

  所以,所以;

  設,

  則,所以

  所以,所以,

  又因為,

  所以,所以 6分

  (方法二)設,

  如圖建系,

  則

  ,

   6分

  (2)(方法一)取中點,連結,

  因為,所以四邊形為平行四邊形,

  所以,所以為異面直線所成的角  8分

  設,則,求得

  所以,

  解得(舍)或  12分

  (方法二)設,

  則

  所以,

    8分

  所以,

  所以 12分


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點C到平面B1DP的距離.

查看答案和解析>>

科目:高中數學 來源:2011年四川省招生統一考試理科數學 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數學 來源:2011年高考試題數學理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數學 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離

查看答案和解析>>

科目:高中數學 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點C到平面B1DP的距離.

查看答案和解析>>

同步練習冊答案