精英家教網 > 高中數學 > 題目詳情

【題目】如圖,△ABC的頂點A,C在圓O上,B在圓外,線段AB與圓O交于點M.
(1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長度;
(2)若線段BC與圓O交于另一點N,且AB=2AC,求證:BN=2MN.

【答案】
(1)解:由切割線定理可得BC2=BMBA.

設AM=t,則

∵AB=8,BC=4,∴16=8(8﹣t),

∴t=6,即線段AM的長度為6


(2)證明:由題意,∠A=∠MNB,∠B=∠B,

∴△BMN∽△BCA,

,

∵AB=2AC,

∴BN=2MN


【解析】(1)由切割線定理可得BC2=BMBA.由此可得方程,即可求線段AM的長度;(2)證明△BMN∽△BCA,結合AB=2AC,即可證明:BN=2MN.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】現要完成下列3項抽樣調查:

①從15種疫苗中抽取5種檢測是否合格.

②渦陽縣某中學共有480名教職工,其中一線教師360名,行政人員48名,后勤人員72名.為了解教職工對學校校務公開方面的意見,擬抽取一個容量為20的樣本.

③渦陽縣某中學報告廳有28排,每排有35個座位,一次報告會恰好坐滿了聽眾,報告會結束后,為了聽取意見,需要請28名聽眾進行座談.

較為合理的抽樣方法是( )

A. ①簡單隨機抽樣, ②系統(tǒng)抽樣, ③分層抽樣

B. ①簡單隨機抽樣, ②分層抽樣, ③系統(tǒng)抽樣

C. ①系統(tǒng)抽樣, ②簡單隨機抽樣, ③分層抽樣

D. ①分層抽樣, ②系統(tǒng)抽樣, ③簡單隨機抽樣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現有 (n≥2,n∈N*)個給定的不同的數隨機排成一個下圖所示的三角形數陣:
設Mk是第k行中的最大數,其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn
(1)求p2的值;
(2)證明:pn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f (x)=ex﹣ax﹣1,其中e為自然對數的底數,a∈R.
(1)若a=e,函數g (x)=(2﹣e)x. ①求函數h(x)=f (x)﹣g (x)的單調區(qū)間;
②若函數F(x)= 的值域為R,求實數m的取值范圍;
(2)若存在實數x1 , x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求證:e﹣1≤a≤e2﹣e.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給定數列{cn},如果存在常數p、q使得cn+1=pcn+q對任意n∈N*都成立,則稱{cn}為“M類數列”.

(1)若{an}是公差為d的等差數列,判斷{an}是否為“M類數列”,并說明理由;

(2)若{an}是“M類數列”且滿足:a1=2,an+an+1=32n

①求a2、a3的值及{an}的通項公式;

②設數列{bn}滿足:對任意的正整數n,都有a1bn+a2bn﹣1+a3bn﹣2+…+anb1=32n+1﹣4n﹣6,且集合M={n|≥λ,n∈N*}中有且僅有3個元素,試求實數λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l: (t為參數),與曲線C: (k為參數)交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】把圓分成個扇形,設用4種顏色給這些扇形染色,每個扇形恰染一種顏色,并且要求相鄰扇形的顏色互不相同,設共有種方法.

(1)寫出的值;

(2)猜想 ,并用數學歸納法證明。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某手機廠商推出一款6吋大屏手機,現對500名該手機用戶(200名女性,300名男性)進行調查,對手機進行評分,評分的頻數分布表如下:

女性用戶

分值區(qū)間

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

頻數

20

40

80

50

10

男性用戶

分值區(qū)間

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

頻數

45

75

90

60

30

(Ⅰ)完成下列頻率分布直方圖,并指出女性用戶和男性用戶哪組評分更穩(wěn)定(不計算具體值,給出結論即可);

(Ⅱ)根據評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評分小于90分的人數的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是邊長為2的菱形,平面,

1)證明:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案