【題目】已知函數(shù)f(x)= (a≠0).
(1)試討論y=f(x)的極值;
(2)若a>0,設(shè)g(x)=x2emx , 且任意的x1 , x2∈[0,2],f(x1)﹣g(x2)≥﹣1恒成立,求m的取值范圍.
【答案】
(1)解:f′(x)=﹣ ,
a>0時,當(dāng)x=﹣1時,f(x)的極小值為f(﹣1)=﹣ ,
當(dāng)x=1時,f(x)的極大值為f(1)= ,
a<0時,當(dāng)x=﹣1時,f(x)的極大值為f(﹣1)=﹣ ,
當(dāng)x=1時,f(x)的極小值為f(1)=
(2)解:方法一:由題意知,x1,x2∈[0,2],
f(x)min(x1)+1≥gmax(x2),
x1∈[0,2],fmin(x1)+1=1,
x∈[0,2],x2emx≤1,m≤﹣ ,m≤{﹣ }min,m≤﹣ln2,
方法二:分類討論
x1∈[0,2],fmin(x1)+1=1,
∴x∈[0,2],gmax(x)≤1,
g(x)=x2emx,g′(x)=emxx(mx+2),
1)當(dāng)m≥0時,g(x)在[0,2]上單調(diào)遞增,
gmax(x)=g(2)=4e2m≤1,解得:m≤﹣ln2(舍),
2)當(dāng)﹣1<m<0時,g(x)在[0,2]上單調(diào)遞增,
gmax(x)=g(2)=4e2m≤1,解得:m≤﹣ln2,
∴﹣1<m≤﹣ln2,
3)當(dāng)m≤﹣1時,g(x)在[0,﹣ ]上單調(diào)遞增,在[﹣ ,2]上單調(diào)遞減,
gmax(x)=g(﹣ )= ≤1,解得:m≤﹣ ,∴m≤﹣1,
綜合得:m≤﹣ln2.
【解析】(1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的極值即可;(2)結(jié)合題意得到f(x)min(x1)+1≥gmax(x2),法一:分離參數(shù)問題轉(zhuǎn)化為m≤﹣ ,從而求出m的范圍即可;法二:通過分類討論求出m的范圍即可.
【考點精析】掌握函數(shù)的極值與導(dǎo)數(shù)是解答本題的根本,需要知道求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 ,其左、右焦點分別為F1 , F2 , 離心率為 ,點R的坐標(biāo)為 ,又點F2在線段RF1的中垂線上.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左、右頂點分別為A1 , A2 , 點P在直線 上(點P不在x軸上),直線PA1 , PA2與橢圓C分別交于不同的兩點M,N,線段MN的中點為Q,若|MN|=λ|A1Q|,求λ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知直線l1:y=tanαx(0≤a<π,α ),拋物線C: (t為參數(shù)).以原點O為極點,x軸的非負半軸為極軸建立極坐標(biāo)系 (Ⅰ)求直線l1和拋物線C的極坐標(biāo)方程;
(Ⅱ)若直線l1和拋物線C相交于點A(異于原點O),過原點作與l1垂直的直線l2 , l2和拋物線C相交于點B(異于原點O),求△OAB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實數(shù)x滿足:x2﹣4ax+3a2<0(a>0),q:實數(shù)x滿足:x=( )m﹣1 , m∈(1,2).
(1)若a= ,且p∧q為真,求實數(shù)x的取值范圍;
(2)q是p的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的定義域的R,當(dāng)x<0時,f(x)>1,且對任意的實數(shù)x,y∈R,等式f(x)f(y)=f(x+y)成立,若數(shù)列{an}滿足f(an+1)f( )=1(n∈N*),且a1=f(0),則下列結(jié)論成立的是( )
A.f(a2013)>f(a2016)
B.f(a2014)>f(a2017)
C.f(a2016)<f(a2015)
D.f(a2013)>f(a2015)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果執(zhí)行如圖所示的程序框圖,輸入正整數(shù)N(N≥2)和實數(shù)a1 , a2 , …,an , 輸出A,B,則( )
A.A和B分別是a1 , a2 , …,an中最小的數(shù)和最大的數(shù)
B.A和B分別是a1 , a2 , …,an中最大的數(shù)和最小的數(shù)
C. 為a1 , a2 , …,an的算術(shù)平均數(shù)
D.A+B為a1 , a2 , …,an的和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(在平面直角坐標(biāo)系xOy中,已知曲線C1:x2+y2=1,以平面直角坐標(biāo)系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線l:ρ(2cosθ﹣sinθ)=6.
(1)將曲線C1上的所有點的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的 、2倍后得到曲線C2 , 試寫出直線l的直角坐標(biāo)方程和曲線C2的參數(shù)方程;
(2)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點 與定點 的距離和它到定直線 的距離的比是 ∶ ,記點 的軌跡為 .
(1)求曲線 的方程;
(2)對于定點 ,作過點 的直線 與曲線 交于不同的兩點 , ,求△ 的內(nèi)切圓半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程為x2+y2﹣6x=0,過點(1,2)的該圓的三條弦的長a1 , a2 , a3構(gòu)成等差數(shù)列,則數(shù)列a1 , a2 , a3的公差的最大值是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com