設(shè)數(shù)列{an}滿足an+1=an2nan+1,n=1,2,3,….

(1)當(dāng)a1=2時(shí),求a2、a3、a4,并由此猜想出an的一個(gè)通項(xiàng)公式;

(2)當(dāng)a1≥3時(shí),證明所有n≥1,有ann+2.

(1)解:由a1=2,得a2=a12a1+1=3;由a2=3,得a3=a222a2+1=4;由a3=4,得a4=a323a3+1=5.由此猜想an的一個(gè)通項(xiàng)公式an=n+1(n≥1).

(2)證明:①當(dāng)n=1時(shí),a1≥3=1+2,不等式成立.

②假設(shè)當(dāng)n=k時(shí)不等式成立,即akk+2,那么ak+1=akakk)+1≥(k+2)(k+2-k)+1≥k+3.也就是說,當(dāng)n=k+1時(shí),ak+1≥(k+1)+2.

由①和②知對所有n≥1,有ann+2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時(shí)滿足:①不等式f(x)≤0的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試構(gòu)造一個(gè)數(shù)列{bn},(寫出{bn}的一個(gè)通項(xiàng)公式)滿足:對任意的正整數(shù)n都有bn<an,且
lim
n→∞
an
bn
=2,并說明理由;
(3)設(shè)各項(xiàng)均不為零的數(shù)列{cn}中,所有滿足ci-ci+1<0的正整數(shù)i的個(gè)數(shù)稱為這個(gè)數(shù)列{cn}的變號數(shù).令cn=1-
a
an
(n為正整數(shù)),求數(shù)列{cn}的變號數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足:a1=2,an+1=1-
1
an
,記數(shù)列{an}的前n項(xiàng)之積為Πn,則Π2011的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•天津模擬)設(shè)數(shù)列{an} 滿足a1=a,an+1=can+1-c(n∈N*),其中a、c為實(shí)數(shù),且c≠0.
(1)求數(shù)列{an} 的通項(xiàng)公式;
(2)設(shè)a=
1
2
,c=
1
2
,bn=n(a-an)(n∈N*),求數(shù)列 {bn}的前n項(xiàng)和Sn
(3)設(shè)a=
3
4
,c=-
1
4
cn=
3+an
2-an
(n∈N*),記dn=c2n-c2n-1(n∈N*),設(shè)數(shù)列{dn}的前n項(xiàng)和為Tn,求證:對任意正整數(shù)n都有Tn
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•南京一模)已知函數(shù)f(x)=2+
1
x
.?dāng)?shù)列{an}中,a1=a,an+1=f(an)(n∈N*).當(dāng)a取不同的值時(shí),得到不同的數(shù)列{an},如當(dāng)a=1時(shí),得到無窮數(shù)列1,3,
7
3
17
7
,…;當(dāng)a=-
1
2
時(shí),得到有窮數(shù)列-
1
2
,0.
(1)求a的值,使得a3=0;
(2)設(shè)數(shù)列{bn}滿足b1=-
1
2
bn=f(bn+1)(n∈N*)
,求證:不論a取{bn}中的任何數(shù),都可以得到一個(gè)有窮數(shù)列{an};
(3)求a的取值范圍,使得當(dāng)n≥2時(shí),都有
7
3
an
<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•嘉定區(qū)一模)(理)已知函數(shù)f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點(diǎn).
(1)若x1+x2=1,求證:y1+y2為定值;
(2)設(shè)Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn關(guān)于n的解析式;
(3)對(2)中的Tn,設(shè)數(shù)列{an}滿足a1=2,當(dāng)n≥2時(shí),an=4Tn+2,問是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
對一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案