已知三棱錐D—ABC的三個側(cè)面與底面全等,且AB=AC=,BC=2,則以BC為棱,以平面BCD與平面BCA為面的二面角的大小是___________.

答案:

解析:如圖,取BC邊的中點M,則由△DBC≌△ABC,可得DM=AM=,且DM⊥BC,AM⊥BC,即∠DMA就是二面角D-BC-A的平面角,由AD=2可得此三角形為直角三角形,即此二面角為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐D-ABC的頂點都在球O的球面上,AB=4,BC=3,AB⊥BC,AD=12,且DA⊥平面ABC,則三棱錐A-BOD的體積等于
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐D-ABC的三個側(cè)面與底面全等,且AB=AC=
3
,BC=2,則以BC為棱,以面BCD與面BCA為面的二面角的余弦值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐D-ABC的頂點都在球O的球面上,AB=4,BC=3,∠ABC=90°,AD=12,且DA⊥平面ABC,則球O的表面積等于
169π
169π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐D-ABC的三個側(cè)面與底面全等,且AB=AC=
3
,BC=2,則二面角A-BC-D的大小是( 。
A、45°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐D-ABC的頂點都在球O的球面上,AB=4,BC=3,∠ABC=90°,AD=12,且DA⊥平面ABC,則球O的半徑等于
13
2
13
2

查看答案和解析>>

同步練習(xí)冊答案