如下圖,為橢圓的兩個焦點,過的直線交橢圓于P,Q兩點,,求橢圓的離心率.
科目:高中數(shù)學(xué) 來源:湖南師大附中2011-2012學(xué)年高二12月階段檢測數(shù)學(xué)理科試題 題型:044
如下圖,某隧道設(shè)計為雙向四車道,車道總寬20 m,要求通行車輛限高5 m,隧道全長2.5 km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個橢圓.
(1)若最大拱高h為6 m,則隧道設(shè)計的拱寬l是多少?
(2)若要使隧道上方半橢圓部分的土方工程量最小,則應(yīng)如何設(shè)計拱高h和拱寬l?
(已知:橢圓+=1的面積公式為S=πab,柱體體積為底面積乘以高.)
(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個點M、N,使它們所在位置的高度恰好是限高5 m,現(xiàn)以M、N以及橢圓的左、右頂點為支點,用合金鋼板把隧道拱線部分連接封閉,形成一個梯形,若l=30 m,梯形兩腰所在側(cè)面單位面積的鋼板造價與梯形頂部單位面積鋼板造價相同且為定值,試確定M、N的位置以及h的值,使總造價最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:044
如下圖,已知橢圓的中心在原點,它在x軸上的一個焦點F與短軸的兩個端點B1、B2的連線互相垂直,且這個焦點與較近的長軸的端點A的距離為,求這個橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)如下圖,某隧道設(shè)計為雙向四車道,車道總寬20 m,要求通行車輛限高5 m,隧道全長2.5 km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個橢圓.
(1)若最大拱高h為6 m,則隧道設(shè)計的拱寬l是多少?
(2)若要使隧道上方半橢圓部分的土方工程量最小,則應(yīng)如何設(shè)計拱高h和拱寬l?
(已知:橢圓+=1的面積公式為S=,柱體體積為底面積乘以高.)
(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個點M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以M、N以及橢圓的左、右頂點為支點,用合金鋼板把隧道拱線部分連接封閉,形成一個梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價是梯形頂部單位面積鋼板造價的倍,試確定M、N的位置以及的值,使總造價最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省懷化市高三第二次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:選擇題
下圖展示了一個由區(qū)間(其中為一正實數(shù))到實數(shù)集R上的映射過程:區(qū)間中的實數(shù)對應(yīng)線段上的點,如圖1;將線段圍成一個離心率為的橢圓,使兩端點、恰好重合于橢圓的一個短軸端點,如圖2 ;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在軸上,已知此時點的坐標為,如圖3,在圖形變化過程中,圖1中線段的長度對應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線與直線交于點,則與實數(shù)對應(yīng)的實數(shù)就是,記作,
現(xiàn)給出下列5個命題
①; ②函數(shù)是奇函數(shù);③函數(shù)在上單調(diào)遞增; ④.函數(shù)的圖象關(guān)于點對稱;⑤函數(shù)時AM過橢圓的右焦點.其中所有的真命題是: ( )
A.①③⑤ B.②③④ C.②③⑤ D.③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com