13.若數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a22=a3,a3-a2=6a1.則{an}的公比q=3.

分析 利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q>0,
∵a22=a3,a3-a2=6a1
∴$\left\{\begin{array}{l}{{a}_{1}^{2}{q}^{2}={a}_{1}{q}^{2}}\\{{a}_{1}({q}^{2}-q)=6{a}_{1}}\end{array}\right.$,解得a1=1,q=3.
故答案為:3.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知:橢圓C的對(duì)稱中心為坐標(biāo)原點(diǎn),其中一個(gè)頂點(diǎn)為A(0,2),左焦點(diǎn)F(-2$\sqrt{2}$,0).
(1)求橢圓的方程
(2)是否存在過點(diǎn)B(0,-2)的直線l,使直線l與橢圓C相交于不同的兩點(diǎn)M、N,并且|AM|=|AN|?若存在,求出l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.點(diǎn)$(\sqrt{2},\sqrt{3})$在雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上,且C的焦距為4,則它的離心率為( 。
A.2B.4C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知等比數(shù)列{an}是遞增數(shù)列,Sn是{an}的前n項(xiàng)和.若a1,a3是方程x2-10x+9=0 的兩根,則S5=121.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)$f(x)={log_2}(x+\sqrt{{x^2}+1})+\frac{{5{e^x}+3}}{{{e^x}+1}}$,x∈[-k,k](k>0)的最大值和最小值分別為M和m,則M+m=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=ax2-2ax+a+$\frac{1}{3}$(a>0),g(x)=bx3-2bx2+bx-$\frac{4}{27}$(b>1),則y=g[f(x)]的零點(diǎn)個(gè)數(shù)為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合S={y|y=2x},T={x|y=lg(x+1)},則S∩T=( 。
A.(0,+∞)B.[0,+∞)C.(-1,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.回文數(shù)是指從左到右讀與從右到左都是一樣的正整數(shù).如121,94249是回文數(shù),則4位回文數(shù)有90個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.定義在R上的函數(shù)f(x)滿足f(1)=1,且對(duì)任意x∈R都有f$′(x)<\frac{1}{2}$,則不等式f(x3)$>\frac{{x}^{3}+1}{2}$的解集為(-∞,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案