【題目】已知數(shù)列{an}的前n項和為Sn,2Sn+2n=an+1﹣2,a2=8,其中n∈N*.
(1)記bn=an+1,求證:{bn}是等比數(shù)列;
(2)設為數(shù)列{cn}的前n項和,若不等式k>Tn對任意的n∈N*恒成立,求實數(shù)k的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與軸,軸分別交于,,線段的中垂線與拋物線有兩個不同的交點、.
(1)求的取值范圍;
(2)是否存在,使得,,,四點共圓,若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交通擁堵指數(shù)是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通擁堵指數(shù)為,其范圍為,分別有五個級別:暢通;基本暢通;輕度擁堵;中度擁堵;嚴重擁堵.晚高峰時段(),從某市交通指揮中心選取了市區(qū)20個交通路段,依據(jù)其交通擁堵指數(shù)數(shù)據(jù)繪制的直方圖如圖所示.
(Ⅰ)用分層抽樣的方法從交通指數(shù)在,,的路段中共抽取個路段,求依次抽取的三個級別路段的個數(shù);
(Ⅱ)從(Ⅰ)中抽出的個路段中任取個,求至少有個路段為輕度擁堵的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求f(x)的最小正周期和單調遞減區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向右平移個單位,得到函數(shù)g(x)的圖象,求g(x)在區(qū)間上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線C1的參數(shù)方程為(為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為,曲線C2的極坐標方程為ρ=2sinθ.
(1)探究直線l與曲線C2的位置關系,并說明理由;
(2)若曲線C3的極坐標方程為,且曲線C3與曲線C1、C2分別交于M、N兩點,求|OM|2|ON|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的右焦點到漸近線的距離為3.現(xiàn)有如下條件:①雙曲線的離心率為; ②雙曲線與橢圓共焦點; ③雙曲線右支上的一點到的距離之差是虛軸長的倍.
請從上述3個條件中任選一個,得到雙曲線的方程為_____________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x對所有的b∈(-∞,0],x∈(e,e2]都成立,則實數(shù)a的取值范圍是( )
A. [e,+∞)B. [,+∞)
C. [,e2)D. [e2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的上頂點為,以為圓心橢圓的長半軸為半徑的圓與軸的交點分別為,.
(1)求橢圓的標準方程;
(2)設不經(jīng)過點的直線與橢圓交于,兩點,且,試探究直線是否過定點?若過定點,求出該定點的坐標,若不過定點,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com