設(shè){an}為等差數(shù)列,Sn為數(shù)列的前n項和,S4=20,a1=2,bn=
1
Sn
,求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件利用等差數(shù)列前n項和公式求出公差,從而得到Sn=n2+n,進而得到bn=
1
Sn
=
1
n2+n
=
1
n
-
1
n+1

由此利用裂項求和法能求出數(shù)列{bn}的前n項和Tn
解答: 解:∵{an}為等差數(shù)列,Sn為數(shù)列的前n項和,S4=20,a1=2,
4×2+
4×3
2
d=20
,解得d=2,
∴Sn=2n+
n(n-1)
2
×2
=n2+n,
∴bn=
1
Sn
=
1
n2+n
=
1
n
-
1
n+1
,
∴Tn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1

=
n
n+1
點評:本題考查數(shù)列的前n項和的求法,解題時要認真審題,注意裂項求和法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于以下說法:
①命題“?x>0,使x2+x+1<0”的否定是“?x≤0,x2+x+1≥0”;
②動點P到點M(-2,0)及點N(2,0)的距離之差為定值1,則點P的軌跡是雙曲線;
③三棱錐O-ABC中,若點P滿足
OP
=x
OA
+y
OB
+z
OC
,且x+y+z=1,則點P在平面ABC內(nèi).
其中正確的個數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,則3sin2α-cosαsinα+1=(  )
A、3B、-3C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對應(yīng)的邊分別為a、b、c,已知bcosC+ccosB=2b,則
a
b
=( 。
A、2
B、
1
2
C、
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求點P(7,-6)到直線l:(3a+1)x+(1-2a)y+a-3=0的最大距離及相應(yīng)的a值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1,an+an+1=4n,Sn是數(shù)列{an}的前n項和.?dāng)?shù)列{bn}前n項的積為Tn,且Tn=2
n(n+1)
2

(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)是否存在常數(shù)a,使得{Sn-a}成等差數(shù)列?若存在,求出a,若不存在,說明理由;
(Ⅲ)是否存在m∈N*,滿足對任意自然數(shù)n>m時,bn>Sn恒成立,若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|<π)在一個周期內(nèi),當(dāng)x=-
π
12
時,f(x)取得最小值-2;當(dāng)x=
12
時,f(x)取得最大值4,試求f(x)的函數(shù)表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從天氣網(wǎng)查詢到衡水歷史天氣統(tǒng)計 (2011-01-01到2014-03-01)資料如下:

自2011-01-01到2014-03-01,衡水共出現(xiàn):多云507天,晴356天,雨194天,雪36天,陰33天,其它2天,合計天數(shù)為:1128天.本市朱先生在雨雪天的情況下,分別以
1
2
的概率乘公交或打出租的方式上班(每天一次,且交通方式僅選一種),每天交通費用相應(yīng)為2元或40元;在非雨雪天的情況下,他以90%的概率騎自行車上班,每天交通費用0元;另外以10%的概率打出租上班,每天交通費用20元.(以頻率代替概率,保留兩位小數(shù).參考數(shù)據(jù):
115
564
≈0.20)
(1)求他某天打出租上班的概率;
(2)將他每天上班所需的費用記為X(單位:元),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是矩形,AB=
2
,BC=
6
,將△ABC沿著對角線AC折起來得到△AB1C,且頂點B1在平面AB=CD上射影O恰落在邊AD上,如圖所示.
(1)求證:AB1⊥平面B1CD;
(2)求三棱錐B1-ABC的體積VB1-ABC

查看答案和解析>>

同步練習(xí)冊答案