某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級(jí)籽棉2噸、二級(jí)籽棉1噸;生產(chǎn)乙種棉紗1噸需耗一級(jí)籽棉1噸,二級(jí)籽棉2噸.每1噸甲種棉紗的利潤(rùn)為900元,每1噸乙種棉紗的利潤(rùn)為600元.工廠在生產(chǎn)這兩種棉紗的計(jì)劃中,要求消耗一級(jí)籽棉不超過(guò)250噸,二級(jí)籽棉不超過(guò)300噸.問(wèn)甲、乙兩種棉紗應(yīng)各生產(chǎn)多少?lài),能使利?rùn)總額最大?并求出利潤(rùn)總額的最大值.
分析:利用線性規(guī)劃知識(shí)求解,建立約束條件,作出可行域,再根據(jù)目標(biāo)函數(shù)z=900x+600y,利用截距模型,平移直線找到最優(yōu)解,即可.
解答:解:設(shè)生產(chǎn)甲、乙兩種棉紗分別為x、y噸,利潤(rùn)總額為z,
則z=900x+600y    …2
2x+y≤250
x+2y≤300
x≥0,y≥0
…4
作出以上不等式組所表示的平面區(qū)域(如圖),
即可行域.…6
作直線l:900x+600y=0,即3x+2y=0,
把直線l向右上方平移至過(guò)直線2x+y=250與
直線x+2y=300的交點(diǎn)位置M(
200
3
,
350
3
),…10
此時(shí)所求利潤(rùn)總額z=900x+600y取最大值130000元.…12.
點(diǎn)評(píng):本題考查用線性規(guī)劃解決實(shí)際問(wèn)題中的最值問(wèn)題,解題的關(guān)鍵是確定約束條件,作出可行域,利用目標(biāo)函數(shù)的類(lèi)型,找到最優(yōu)解,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級(jí)子棉2噸,二級(jí)子棉1噸;生產(chǎn)乙種棉紗需耗一級(jí)子棉1噸,二級(jí)子棉2噸;每噸甲種棉紗的利潤(rùn)是600元,每噸乙種棉紗的利潤(rùn)是900元;工廠在生產(chǎn)這兩種棉紗的計(jì)劃中要求消耗一級(jí)子棉不超過(guò)300噸,二級(jí)子棉不超過(guò)250噸.問(wèn)甲、乙兩種棉紗各生產(chǎn)多少?lài)崳拍苁估麧?rùn)總額最大?并求最大利潤(rùn)總額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級(jí)子棉2噸、二級(jí)子棉1噸;生產(chǎn)乙種棉紗需耗一級(jí)子棉1噸、二級(jí)子棉2噸,每1噸甲種棉紗的利潤(rùn)是600元,每1噸乙種棉紗的利潤(rùn)是900元,工廠在生產(chǎn)這兩種棉紗的計(jì)劃中要求消耗一級(jí)子棉不超過(guò)300噸、二級(jí)子棉不超過(guò)250噸.甲、乙兩種棉紗應(yīng)各生產(chǎn)多少,能使利潤(rùn)總額最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級(jí)子棉2噸、二級(jí)子棉1噸;生產(chǎn)乙種棉紗需耗一級(jí)子棉1噸、二級(jí)子棉2噸,每1噸甲種棉紗的利潤(rùn)是600元,每1噸乙種棉紗的利潤(rùn)是900元,工廠在生產(chǎn)這兩種棉紗的計(jì)劃中要求消耗一級(jí)子棉不超過(guò)300噸、二級(jí)子棉不超過(guò)250噸.甲、乙兩種棉紗應(yīng)各生產(chǎn)多少(精確到噸),能使利潤(rùn)總額最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東省高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級(jí)籽棉2噸、二級(jí)籽棉1噸;生產(chǎn)乙種棉紗1噸需耗一級(jí)籽棉1噸,二級(jí)籽棉2噸.每1噸甲種棉紗的利潤(rùn)為900元,每1噸乙種棉紗的利潤(rùn)為600元.工廠在生產(chǎn)這兩種棉紗的計(jì)劃中,要求消耗一級(jí)籽棉不超過(guò)250噸,二級(jí)籽棉不超過(guò)300噸.問(wèn)甲、乙兩種棉紗應(yīng)各生產(chǎn)多少?lài)崳苁估麧?rùn)總額最大?并求出利潤(rùn)總額的最大值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案