【題目】某廠家計(jì)劃在2012年舉行商品促銷(xiāo)活動(dòng),經(jīng)調(diào)查測(cè)算,該商品的年銷(xiāo)售量萬(wàn)件與年促銷(xiāo)費(fèi)用萬(wàn)元滿(mǎn)足:,其中為常數(shù),若不搞促銷(xiāo)活動(dòng),則該產(chǎn)品的年銷(xiāo)售量只有1萬(wàn)件,已知2012年生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元,廠家的產(chǎn)量等于銷(xiāo)售量,而銷(xiāo)售收入為生產(chǎn)成本的1.5倍(生產(chǎn)成本由固定投入和再投入兩部分資金組成).
(1)將2012年該產(chǎn)品的利潤(rùn)萬(wàn)元表示為年促銷(xiāo)費(fèi)用萬(wàn)元的函數(shù);
(2)該廠2012年的促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?
【答案】(1);(2)促銷(xiāo)費(fèi)用投入3萬(wàn)元時(shí),廠家的利潤(rùn)最大
【解析】
試題分析:(1)確定產(chǎn)品的年銷(xiāo)售量x萬(wàn)件與年促銷(xiāo)費(fèi)用m萬(wàn)元的函數(shù)關(guān)系式,根據(jù)每件產(chǎn)品的銷(xiāo)售價(jià)格,即可得到結(jié)論;(2)利用基本不等式,求最大值即可.
試題解析:(1)由題意可得當(dāng)時(shí),,∴
∴,
即
(2),當(dāng)且僅當(dāng),
即時(shí)等號(hào)成立,
所以促銷(xiāo)費(fèi)用投入3萬(wàn)元時(shí),廠家的利潤(rùn)最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,且,數(shù)列為等差數(shù)列,且, .
(1)求數(shù)列和的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班有學(xué)生50人,其中男同學(xué)30人,用分層抽樣的方法從該班抽取5人去參加某社區(qū)服務(wù)活動(dòng)。
(1)求從該班男、女同學(xué)中各抽取的人數(shù);
(2)從抽取的5名同學(xué)中任選2名談此活動(dòng)的感受,求選出的2名同學(xué)中恰有1名男同學(xué)的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,設(shè)傾斜角為的直線為參數(shù))與曲線為參數(shù))相交于不同的兩點(diǎn).
(1)若,求線段中點(diǎn)的坐標(biāo);
(2)若,其中,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)若對(duì)任意的恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸, 建立平面直角坐標(biāo)系,在平面直角坐標(biāo)系中, 直線經(jīng)過(guò)點(diǎn),傾斜角.
(1)寫(xiě)出曲線直角坐標(biāo)方程和直線的參數(shù)方程;
(2)設(shè)與曲線相交于兩點(diǎn), 求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某校高三上學(xué)期期末數(shù)學(xué)考試成績(jī)中,隨機(jī)抽取了名學(xué)生的成績(jī)得到頻率分布直方圖如下:
(1)若用分層抽樣的方法從分?jǐn)?shù)在和的學(xué)生中共抽取人,該人中成績(jī)?cè)?/span>的有幾人?
(2)在(1)中抽取的人中,隨機(jī)抽取人,求分?jǐn)?shù)在和各人的概率.
(3)根據(jù)頻率分布直方圖,估計(jì)該校高三學(xué)生本次數(shù)學(xué)考試的平均分;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求的普通方程和的傾斜角;
(2)設(shè)點(diǎn),和交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}共有2k項(xiàng)(),數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足:a1 = 2,an1 = (p 1) Sn 2(n = 1,2,…, 2k1),其中常數(shù)p > 1.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若,數(shù)列{bn }滿(mǎn)足(n = 1,2,…, 2k),求數(shù)列
{bn }的通項(xiàng)公式;
(3)對(duì)于(2)中數(shù)列{bn },求和Tn = .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com