一個袋中裝有6個形狀大小完全相同的小球,球的編號分別為1,2,3,4,5,6.
(Ⅰ)若從袋中每次隨機抽取1個球,有放回的抽取3次,求恰有2次抽到6號球的概率;
(Ⅱ)若一次從袋中隨機抽取3個球,記球的最大編號為X,求隨機變量X的分布列和期望.
分析:(I)確定每次從袋中隨機抽取1個球,抽到編號為6號球的概率,即可求出恰有2次抽到編號為6的小球的概率;
(II)確定隨機變量X所有可能的取值,求出相應(yīng)的概率,即可求出隨機變量X的分布列與數(shù)學期望.
解答:解:(Ⅰ)每次從袋中隨機抽取1個球,抽到編號為6號球的概率p=
1
6

所以,3次抽取中,恰有2次抽到6號球的概率為
C
2
3
p2(1-p)=3×(
1
6
)2(
5
6
)=
5
72
.…(6分)
(Ⅱ)隨機變量X所有可能的取值為3,4,5,6.…(7分)P(X=3)=
C
3
3
C
3
6
=
1
20
,P(X=4)=
C
2
3
C
3
6
=
3
20
,P(X=5)=
C
2
4
C
3
6
=
6
20
=
3
10
P(X=6)=
C
2
5
C
3
6
=
10
20
=
1
2

∴隨機變量X的分布列為
X 3 4 5 6
P
1
20
3
20
3
10
1
2
…(11分)
EX=3×
1
20
+4×
3
20
+5×
3
10
+6×
1
2
=
21
4
…(13分)
點評:本題考查概率的計算,考查離散型隨機變量的分布列與數(shù)學期望,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一個袋中裝有6個形狀大小完全相同的小球,球的編號分別為1,2,3,4,5,6.
(Ⅰ)若從袋中每次隨機抽取1個球,有放回的抽取2次,求取出的兩個球編號之和為6的概率;
(Ⅱ)若從袋中每次隨機抽取2個球,有放回的抽取3次,求恰有2次抽到6號球的概率;
(Ⅲ)若一次從袋中隨機抽取3個球,記球的最大編號為X,求隨機變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•連云港一模)一個袋中裝有6個形狀大小完全相同的小球,球的編號分別為1,1,1,2,2,3,現(xiàn)從袋中一次隨機抽取3個球.
(1)若有放回的抽取3次,求恰有2次抽到編號為3的小球的概率;
(2)記球的最大編號為X,求隨機變量X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:北京期末題 題型:解答題

一個袋中裝有6個形狀大小完全相同的小球,球的編號分別為1,2,3,4,5,6,
(1)若從袋中每次隨機抽取1個球,有放回的抽取2次,求取出的兩個球編號之和為6的概率;
(2)若從袋中每次隨機抽取2個球,有放回的抽取3次,求恰有2次抽到6號球的概率;
(3)若一次從袋中隨機抽取3個球,記球的最大編號為X,求隨機變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省廣州六中高三(下)2月月考數(shù)學試卷(理科)(解析版) 題型:解答題

一個袋中裝有6個形狀大小完全相同的小球,球的編號分別為1,2,3,4,5,6.
(Ⅰ)若從袋中每次隨機抽取1個球,有放回的抽取2次,求取出的兩個球編號之和為6的概率;
(Ⅱ)若從袋中每次隨機抽取2個球,有放回的抽取3次,求恰有2次抽到6號球的概率;
(Ⅲ)若一次從袋中隨機抽取3個球,記球的最大編號為X,求隨機變量X的分布列.

查看答案和解析>>

同步練習冊答案