1
0
(x2+2x+1)dx=
 
考點:定積分
專題:計算題
分析:求出被積函數(shù)的原函數(shù),分別代入積分上限和積分下限后作差得答案.
解答: 解:
1
0
(x2+2x+1)dx=(
1
3
x3+x2+x)
|
1
0

=
1
3
×13+12+1=
7
3

故答案為:
7
3
點評:本題考查了定積分,解答此題的關鍵是求出被積函數(shù)的原函數(shù),是基礎的計算題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若一個圓錐的側面展開圖是面積為4π的半圓面,則該圓錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ)(其中x∈R,ω>0,-π<φ<π)的部分圖象如圖所示,則函數(shù)f(x)的解析式是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)過點(0,1),且f′(x)=2x,則
1
0
f(x)dx的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正三角形ABC的邊長為2
3
,將它沿高AD翻折,使點B與點C間的距離為
3
,此時四面體ABCD的外接球的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z滿足(1+i)z=2-i(i為虛數(shù)單位),則|z+i|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y的取值如下表,從所得的散點圖分析,y與x線性相關,則
y
=1.1x+
a
,則
a
=( 。
x 0 1 3 4
y 1 2 3 6
A、-0.4B、0.8
C、-1D、-1.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U是實數(shù)集R,M={x||2x-3|≥4},N={x|log
1
3
(x+2)≥0},則M∩N=(  )
A、{x|x≤-
3
2
}
B、{x|-2<x≤-
1
2
}
C、{x|-
3
2
≤x≤-1}
D、{x|-2<x≤-1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:根據(jù)上表可得回歸方程
y
=
b
x+a中的b=10.6,據(jù)此模型預報廣告費用為10萬元時銷售額為( 。
廣告費用x(萬元) 4 2 3 5
銷售額y(萬元) 49 26 39 58
A、112.1萬元
B、113.1萬元
C、111.9萬元
D、113.9萬元

查看答案和解析>>

同步練習冊答案