13.已知△ABC的三個頂點為A(4,0),B(8,10),C(0,6).求過點A且平行于BC的直線方程.

分析 利用斜率公式可求得直線BC的斜率,利用點斜式即可求得過A點且平行于BC的直線方程.

解答 解:(Ⅰ)∵B(8,10),C(0,6),
∴直線BC的斜率kBC=$\frac{6-10}{0-8}$=$\frac{1}{2}$,
又A(4,0),
∴過A點且平行于BC的直線方程為y-0=$\frac{1}{2}$(x-4),
整理得:x-2y-4=0.

點評 本題考查直線的點斜式,考查平行關系的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.$\int_0^1$($\sqrt{1-{x^2}}}$+2x)dx=$\frac{π+4}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知冪函數(shù)過點(2,4),則f(3)=9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知f(α)=$\frac{{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})tan(-α-π)}}{sin(-π-α)}$.
(1)化簡f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值;
(3)若α=-1860°,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列函數(shù)中圖象相同的是( 。
A.y=x與y=$\sqrt{{x}^{2}}$B.y=x-1與y=$\frac{{x}^{2}-1}{x+1}$
C.y=x2與y=2x2D.y=x2-4x+6與y=(x-2)2+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.用數(shù)學歸納法證明等式:12-22+32+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知二次函數(shù)f(x)=ax2-bx+2.
(1)若不等式f(x)>0的解集為{x|x>2或x<1},求a和b的值;
(2)若b=2a+1,對任意a∈[$\frac{1}{2}$,1],f(x)>0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)y=f(x)的定義域為R,當x<0時,f(x)>1,且對任意的實數(shù)x、y∈R,等式f(x)f(y)=f(x+y)恒成立.若數(shù)列{an}滿足a1=f(0),且f(an+1)=$\frac{1}{{f(-2-{a_n})}}$(n∈N*),則a2015的值為(  )
A.4029B.3029C.2249D.2209

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.sin(-1200°)=( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習冊答案