【題目】已知函數(shù).
(1)若在時取到極值,求的值及的圖象在處的切線方程;
(2)若在時恒成立,求的取值范圍.
【答案】(1) ,故在處的切線方程為: ;(2) .
【解析】試題分析:(1)根據(jù)極值點的定義得到,解得,根據(jù)導(dǎo)數(shù)的幾何意義求在點處的切線方程;(2)恒成立求參,直接求導(dǎo)研究導(dǎo)函數(shù)的正負(fù),分三種情況: , , ,分別討論導(dǎo)函數(shù)的正負(fù),最終求得函數(shù)的最值即可。
(1),
∵在時取到極值,∴,解得
故在處的切線方程為:
(2)由定義域知: 對于恒成立,可得
①當(dāng)時,在上, 恒成立,所以此時在遞減
注意到,故此時不恒成立
②當(dāng)時,在區(qū)間上, 恒成立,所以此時在遞增
,故此時恒成立
③當(dāng)時, 的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為
在處取得最小值,只需恒成立
設(shè)
設(shè),
, 在遞減,又
所以即,解得
綜上可知,若恒成立,只需的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是奇函數(shù),當(dāng)x∈(0,2)時,f(x)=lnx﹣ax(a> ),當(dāng)x∈(﹣2,0)時,f(x)的最小值為1,則a的值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 分別是橢圓: ()的左、右焦點,離心率為, , 分別是橢圓的上、下頂點, .
(1)求橢圓的方程;
(2)過作直線與交于, 兩點,求三角形面積的最大值(是坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】劉徽(約公元 225 年—295 年)是魏晉時期偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國寶貴的古代數(shù)學(xué)遺產(chǎn). 《九章算術(shù)·商功》中有這樣一段話:“斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:“此術(shù)臑者,背節(jié)也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實這里所謂的“鱉臑(biē nào)”,就是在對長方體進(jìn)行分割時所產(chǎn)生的四個面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面, 垂直于,且 ,則三棱錐的外接球的球面面積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對任意的實數(shù)滿足: ,且當(dāng)﹣3≤x<﹣1時,f(x)=﹣(x+2)2 , 當(dāng)﹣1≤x<3時,f(x)=x,則f(1)+f(2)+f(3)+…+f(2015)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若是公差不為0的等差數(shù)列的前項和,且成等比數(shù)列,.
(1)求數(shù)列的通項公式;
(2)設(shè)是數(shù)列的前項和,求使得對所有都成立的最小正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次大型運(yùn)動會的組委會為了搞好接待工作,招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有10人和6人喜愛運(yùn)動,其余人不喜愛運(yùn)動.
(1)根據(jù)以上數(shù)據(jù)完成下面2×2列聯(lián)表:
喜愛運(yùn)動 | 不喜愛運(yùn)動 | 總計 | |
男 | 10 | 16 | |
女 | 6 | 14 | |
總計 | 30 |
(2)能否在犯錯誤的概率不超過0.10的前提下認(rèn)為性別與喜愛運(yùn)動有關(guān)系?
(3)已知喜歡運(yùn)動的女志愿者中恰有4人會外語,如果從中抽取2人負(fù)責(zé)翻譯工作,那么抽出的志愿者中至少有1人能勝任翻譯工作的概率是多少?
參考公式:K2= ,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0) | 0.40 | 0.25 | 0.10 | 0.010 |
k0 | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益函數(shù)為R(x)= ,其中x是儀器的產(chǎn)量(單位:臺);
(1)將利潤f(x)表示為產(chǎn)量x的函數(shù)(利潤=總收益﹣總成本);
(2)當(dāng)產(chǎn)量x為多少臺時,公司所獲利潤最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com