【題目】已知函數(shù).

(1)若時取到極值,求的值及的圖象在處的切線方程;

(2)若時恒成立,求的取值范圍.

【答案】(1) ,故在處的切線方程為: ;(2) .

【解析】試題分析:(1)根據(jù)極值點的定義得到,解得,根據(jù)導(dǎo)數(shù)的幾何意義求在點處的切線方程;(2)恒成立求參,直接求導(dǎo)研究導(dǎo)函數(shù)的正負(fù),分三種情況: , ,分別討論導(dǎo)函數(shù)的正負(fù),最終求得函數(shù)的最值即可。

1,

時取到極值,∴,解得

故在處的切線方程為:

2)由定義域知: 對于恒成立,可得

①當(dāng)時,在上, 恒成立,所以此時遞減

注意到,故此時不恒成立

②當(dāng)時,在區(qū)間上, 恒成立,所以此時遞增

,故此時恒成立

③當(dāng)時, 的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為

處取得最小值,只需恒成立

設(shè)

設(shè),

, 遞減,又

所以,解得

綜上可知,若恒成立,只需的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知y=f(x)是奇函數(shù),當(dāng)x∈(0,2)時,f(x)=lnx﹣ax(a> ),當(dāng)x∈(﹣2,0)時,f(x)的最小值為1,則a的值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求處的切線方程;

(2)若在區(qū)間上恰有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 分別是橢圓 )的左、右焦點,離心率為, , 分別是橢圓的上、下頂點,

(1)求橢圓的方程;

(2)過作直線交于, 兩點,求三角形面積的最大值(是坐標(biāo)原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】劉徽(約公元 225 —295 年)是魏晉時期偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國寶貴的古代數(shù)學(xué)遺產(chǎn). 《九章算術(shù)·商功》中有這樣一段話:斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:此術(shù)臑者,背節(jié)也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實這里所謂的鱉臑(biē nào,就是在對長方體進(jìn)行分割時所產(chǎn)生的四個面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面 垂直于,且 ,則三棱錐的外接球的球面面積為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)對任意的實數(shù)滿足: ,且當(dāng)﹣3≤x<﹣1時,f(x)=﹣(x+2)2 , 當(dāng)﹣1≤x<3時,f(x)=x,則f(1)+f(2)+f(3)+…+f(2015)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是公差不為0的等差數(shù)列的前項和,且成等比數(shù)列,.

(1)求數(shù)列的通項公式;

(2)設(shè)是數(shù)列的前項和,求使得對所有都成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次大型運(yùn)動會的組委會為了搞好接待工作,招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有10人和6人喜愛運(yùn)動,其余人不喜愛運(yùn)動.
(1)根據(jù)以上數(shù)據(jù)完成下面2×2列聯(lián)表:

喜愛運(yùn)動

不喜愛運(yùn)動

總計

10

16

6

14

總計

30


(2)能否在犯錯誤的概率不超過0.10的前提下認(rèn)為性別與喜愛運(yùn)動有關(guān)系?
(3)已知喜歡運(yùn)動的女志愿者中恰有4人會外語,如果從中抽取2人負(fù)責(zé)翻譯工作,那么抽出的志愿者中至少有1人能勝任翻譯工作的概率是多少?
參考公式:K2= ,其中n=a+b+c+d.
參考數(shù)據(jù):

P(K2≥k0

0.40

0.25

0.10

0.010

k0

0.708

1.323

2.706

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益函數(shù)為R(x)= ,其中x是儀器的產(chǎn)量(單位:臺);
(1)將利潤f(x)表示為產(chǎn)量x的函數(shù)(利潤=總收益﹣總成本);
(2)當(dāng)產(chǎn)量x為多少臺時,公司所獲利潤最大?最大利潤是多少元?

查看答案和解析>>

同步練習(xí)冊答案