(2013•肇慶二模)各項互不相等的有限正項數(shù)列{an},集合A={a1,a2,…,an,},集合B={(ai,aj)|ai∈A,aj∈A,ai-aj∈A,1≤i,j≤n},則集合B中的元素至多有( 。﹤.
分析:根據(jù)各項互不相等的有限正項數(shù)列{an},不妨假設數(shù)列是單調(diào)遞增的,進而分類討論,利用數(shù)列的求和公式,即可得到結論.
解答:解:因為各項互不相等的有限正項數(shù)列{an},所以不妨假設數(shù)列是單調(diào)遞增的
因為集合A={a1,a2,…,an},集合B={(ai,aj)|ai∈A,aj∈A,ai-aj∈A,1≤i,j≤n},
所以j=1,i最多可取2,3,…,n
j=2,i最多可取3,…,n
…,
j=n-1,i最多可取n
所以集合B中的元素至多有1+2+…+(n-1)=
n(n-1)
2

故選A.
點評:本題主要考查集合與元素的關系,考查組合的有關知識,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•肇慶二模)(坐標系與參數(shù)方程選做題)
若以直角坐標系的x軸的非負半軸為極軸,曲線l1的極坐標系方程為ρsin(θ-
π
4
)=
2
2
(ρ>0,0≤θ≤2π),直線l2的參數(shù)方程為
x=1-2t
y=2t+2
(t為參數(shù)),則l1與l2的交點A的直角坐標是
(1,2)
(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•肇慶二模)定義全集U的子集M的特征函數(shù)為fM(x)=
1,x∈M
0,x∈CUM
,這里?UM表示集合M在全集U中的補集,已M⊆U,N⊆U,給出以下結論:
①若M⊆N,則對于任意x∈U,都有fM(x)≤fN(x);
②對于任意x∈U都有fCUM(x)=1-fM(x);
③對于任意x∈U,都有fM∩N(x)=fM(x)•fN(x);
④對于任意x∈U,都有fM∪N(x)=fM(x)•fN(x).
則結論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•肇慶二模)不等式|2x+1|>|5-x|的解集是
(-∞,-6)∪(
4
3
,+∞)
(-∞,-6)∪(
4
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•肇慶二模)在等差數(shù)列{an}中,a15=33,a25=66,則a35=
99
99

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•肇慶二模)
π
2
0
(3x+sinx)dx=
3
8
π2+1
3
8
π2+1

查看答案和解析>>

同步練習冊答案