【題目】下列函數(shù)中,最小正周期是π且在區(qū)間 上是增函數(shù)的是(
A.y=sin2x
B.y=sinx
C.y=tan
D.y=cos2x

【答案】D
【解析】解答:y=sin2x在區(qū)間 上的單調(diào)性是先減后增,故不對(duì); y=sinx的最小正周期是T= =2π;
y=tan 的最小正周期是T= 2π,
y=cos2x滿足條件
故選D.
分析:y=sin2x的單調(diào)增區(qū)間是[﹣ ],區(qū)間 不是函數(shù)y=sin2x的增區(qū)間,進(jìn)而可判斷A不對(duì);
根據(jù)正弦函數(shù)的最小正周期T= 、正切函數(shù)的最小正周期T= 可判斷B,C不滿足條件,
從而可得到答案.
【考點(diǎn)精析】本題主要考查了正弦函數(shù)的單調(diào)性和余弦函數(shù)的單調(diào)性的相關(guān)知識(shí)點(diǎn),需要掌握正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù);余弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log2 (a為常數(shù))是奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)若當(dāng)x∈(1,3]時(shí),f(x)>m恒成立.求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題: ①函數(shù)y=sin( ﹣2x)是偶函數(shù);
②方程x= 是函數(shù)y=sin(2x+ )的圖象的一條對(duì)稱軸方程;
③若α、β是第一象限角,且α>β,則sinα>sinβ;
④設(shè)x1、x2是關(guān)于x的方程|logax|=k(a>0,a≠1,k>0)的兩根,則x1x2=1;
其中正確命題的序號(hào)是 . (填出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是公差不為0的等差數(shù)列, 是等比數(shù)列,且

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前n項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下幾個(gè)命題中真命題的序號(hào)為
①在空間中,m、n是兩條不重合的直線,α、β是兩個(gè)不重合的平面,如果α⊥β,α∩β=n,m⊥n,那么m⊥β;
②相關(guān)系數(shù)r的絕對(duì)值越接近于1,兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng);
③用秦九昭算法求多項(xiàng)式f(x)=208+9x2+6x4+x6在x=﹣4時(shí),v2的值為22;
④過拋物線y2=4x的焦點(diǎn)作直線與拋物線相交于A、B兩點(diǎn),則使它們的橫坐標(biāo)之和等于4的直線有且只有兩條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè).

(I)求的單調(diào)區(qū)間和最小值;

(II)討論的大小關(guān)系;

(III)求的取值范圍,使得對(duì)任意恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)設(shè),當(dāng)時(shí),,求的最大值;

(3)已知,估計(jì)的近似值(精確到0.001)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集為R,集合A={x| ≤0},集合B={x||2x+1|>3}.求A∩(RB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)三個(gè)向量: =(3,2), =(﹣1,2), =(4,1) (Ⅰ)若( +k )∥(2 ),求實(shí)數(shù)k的值;
(Ⅱ)設(shè) =(x,y),且滿足( + )⊥( ),| |= ,求

查看答案和解析>>

同步練習(xí)冊(cè)答案