已知函數(shù).
(1)當(dāng)時,畫出函數(shù)的簡圖,并指出的單調(diào)遞減區(qū)間;
(2)若函數(shù)有4個零點,求a的取值范圍.

(1)函數(shù)的簡圖如下圖所示,的單調(diào)遞減區(qū)間為;

(2).

解析試題分析: (1)將代入解析式,然后去掉絕對值,得一個兩段都為二次函數(shù)的分段函數(shù):
,據(jù)此可畫出圖象,由圖象可得的單調(diào)遞減區(qū)間.
(2)由,得,這樣問題轉(zhuǎn)化為曲線與直線有4個不同交點,由(1)題中的圖像可得a的取值范圍.
試題解析:(1)當(dāng)時,,

由圖可知,的單調(diào)遞減區(qū)間為.                         6分
(2)由,得,
∴曲線與直線有4個不同交點,
∴根據(jù)(1)中圖像得.                                  12分
考點:1、函數(shù)的圖象;2、函數(shù)的單調(diào)區(qū)間;3、函數(shù)的零點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

若函數(shù)為定義域上的單調(diào)函數(shù),且存在區(qū)間(其中,使得當(dāng)時, 的取值范圍恰為,則稱函數(shù)上的正函數(shù),區(qū)間叫做函數(shù)的等域區(qū)間.
(1)已知上的正函數(shù),求的等域區(qū)間;
(2)試探求是否存在,使得函數(shù)上的正函數(shù)?若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)當(dāng)時,解不等式
(2)若函數(shù)有最大值,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1) 當(dāng)時,函數(shù)恒有意義,求實數(shù)a的取值范圍;
(2) 是否存在這樣的實數(shù)a,使得函數(shù)在區(qū)間上為增函數(shù),并且的最大值為1.如果存在,試求出a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若存在,使不等式成立,求實數(shù)的取值范圍;
(2)設(shè),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

揚州某地區(qū)要建造一條防洪堤,其橫斷面為等腰梯形,腰與底邊成角為(如圖),考慮到防洪堤堅固性及石塊用料等因素,設(shè)計其橫斷面要求面積為平方米,且高度不低于米.記防洪堤橫斷面的腰長為(米),外周長(梯形的上底線段與兩腰長的和)為(米).

⑴求關(guān)于的函數(shù)關(guān)系式,并指出其定義域;
⑵要使防洪堤橫斷面的外周長不超過米,則其腰長應(yīng)在什么范圍內(nèi)?
⑶當(dāng)防洪堤的腰長為多少米時,堤的上面與兩側(cè)面的水泥用料最。磾嗝娴耐庵荛L最小)?求此時外周長的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在上的偶函數(shù),且時,,函數(shù)的值域為集合.
(I)求的值;
(II)設(shè)函數(shù)的定義域為集合,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)是定義域為的奇函數(shù).
(Ⅰ)求的值;
(Ⅱ)若,且上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),
⑴ 求不等式的解集;
⑵ 如果關(guān)于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案