9.已知橢圓的左、右焦點(diǎn)為F1、F2,若橢圓上存在點(diǎn)P使∠F1PF2=60°,則橢圓的離心率的取值范圍為( 。
A.[$\frac{\sqrt{3}}{2}$,1)B.(0,$\frac{\sqrt{3}}{2}$]C.[$\frac{1}{2}$,1)D.(0,$\frac{1}{2}$]

分析 當(dāng)動(dòng)點(diǎn)P在橢圓長(zhǎng)軸端點(diǎn)處沿橢圓弧向短軸端點(diǎn)運(yùn)動(dòng)時(shí),P對(duì)兩個(gè)焦點(diǎn)的張角∠F1PF2漸漸增大,當(dāng)且僅當(dāng)P點(diǎn)位于短軸端點(diǎn)P0處時(shí),張角∠F1PF2達(dá)到最大值,由此可得結(jié)論.

解答 解:如圖,當(dāng)動(dòng)點(diǎn)P在橢圓長(zhǎng)軸端點(diǎn)處沿橢圓弧向短軸端點(diǎn)運(yùn)動(dòng)時(shí),
P對(duì)兩個(gè)焦點(diǎn)的張角∠F1PF2漸漸增大,
當(dāng)且僅當(dāng)P點(diǎn)位于短軸端點(diǎn)P0處時(shí),張角∠F1PF2達(dá)到最大值.
∵存在點(diǎn)P為橢圓上一點(diǎn),使得∠F1PF2=60°,
∴△P0F1F2中,∠F1P0F2≥60°,
∴Rt△P0OF2中,∠OP0F2≥30°,
所以P0O≤$\sqrt{3}$OF2,即b≤$\sqrt{3}$c,
∴a2-c2≤3c2,可得a2≤4c2
∴$\frac{c}{a}$≥$\frac{1}{2}$,
∵0<e<1,
∴$\frac{1}{2}$≤e<1.
故選C.

點(diǎn)評(píng) 本題考查了直角三角形的三角函數(shù)和橢圓的簡(jiǎn)單幾何性質(zhì)等知識(shí)點(diǎn),考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知三個(gè)數(shù)($\frac{1}{2}$)π,log23,log2π,其中最大的數(shù)是log2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.△ABC中,已知sin2B+sin2C+sinBsinC=sin2A.
(Ⅰ)求角A的大;
(Ⅱ)求2$\sqrt{3}$cos2$\frac{C}{2}$-sin($\frac{4π}{3}$-B)的最大值,并求取得最大值時(shí)角B、C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)$f(x)=\frac{{\sqrt{9-{x^2}}}}{ln(x-1)}$的定義域?yàn)椋?,2)∪(2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.有三個(gè)結(jié)論:①$\frac{π}{6}$與$\frac{5}{6}$π的正弦線長(zhǎng)度相等:②$\frac{π}{6}$與$\frac{7}{6}$π的正弦線長(zhǎng)度相等:③$\frac{π}{4}$與$\frac{9}{4}$π的正弦線長(zhǎng)度等.其中正確的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知x是實(shí)數(shù),[x]表示不超過(guò)x的最大整數(shù).若an=[log2n].Sn為數(shù)列{an}的前n項(xiàng)和,求${S}_{{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在非等腰△ABC中,A,B,C的對(duì)邊分別是a,b,c,A+C=2B,2sinc-3sinA=sinB.
(1)求$\frac{c}{a}$的值;
(2)若△ABC的面積為6$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1,x≤1}\\{-1,x>1}\end{array}\right.$則不等式xf(x+1)<x2-2的解集為( 。
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.y=kx+1在區(qū)間(-1,1)上恒為正數(shù),則實(shí)數(shù)k的范圍是[-1,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案