A. | [$\frac{\sqrt{3}}{2}$,1) | B. | (0,$\frac{\sqrt{3}}{2}$] | C. | [$\frac{1}{2}$,1) | D. | (0,$\frac{1}{2}$] |
分析 當動點P在橢圓長軸端點處沿橢圓弧向短軸端點運動時,P對兩個焦點的張角∠F1PF2漸漸增大,當且僅當P點位于短軸端點P0處時,張角∠F1PF2達到最大值,由此可得結(jié)論.
解答 解:如圖,當動點P在橢圓長軸端點處沿橢圓弧向短軸端點運動時,
P對兩個焦點的張角∠F1PF2漸漸增大,
當且僅當P點位于短軸端點P0處時,張角∠F1PF2達到最大值.
∵存在點P為橢圓上一點,使得∠F1PF2=60°,
∴△P0F1F2中,∠F1P0F2≥60°,
∴Rt△P0OF2中,∠OP0F2≥30°,
所以P0O≤$\sqrt{3}$OF2,即b≤$\sqrt{3}$c,
∴a2-c2≤3c2,可得a2≤4c2,
∴$\frac{c}{a}$≥$\frac{1}{2}$,
∵0<e<1,
∴$\frac{1}{2}$≤e<1.
故選C.
點評 本題考查了直角三角形的三角函數(shù)和橢圓的簡單幾何性質(zhì)等知識點,考查數(shù)形結(jié)合的數(shù)學思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,1) | B. | (-∞,-1)∪(1,+∞) | C. | (-∞,-1) | D. | (1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com