【題目】如圖,三棱臺中, 側(cè)面與側(cè)面是全等的梯形,若,且.
(Ⅰ)若, ,證明: ∥平面;
(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.
【答案】(Ⅰ)見解析;(Ⅱ) .
【解析】試題分析:(Ⅰ) 連接,由比例可得∥,進而得線面平行;
(Ⅱ)過點作的垂線,建立空間直角坐標系,不妨設(shè),則求得平面的法向量為,設(shè)平面的法向量為,由求二面角余弦即可.
試題解析:
(Ⅰ)證明:連接,梯形, ,
易知: ;
又,則∥;
平面, 平面,
可得: ∥平面;
(Ⅱ)側(cè)面是梯形, ,
, ,
則為二面角的平面角, ;
均為正三角形,在平面內(nèi),過點作的垂線,如圖建立空間直角坐標系,不妨設(shè),則
,故點,
;
設(shè)平面的法向量為,則有: ;
設(shè)平面的法向量為,則有: ;
,
故平面與平面所成的銳二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足 (其中a>0,a≠1)
(Ⅰ)求f(x)的表達式;
(Ⅱ)對于函數(shù)f(x),當(dāng)x∈(﹣1,1)時,f(1﹣m)+f(1﹣m2)<0,求實數(shù)m的取值范圍;
(Ⅲ)當(dāng)x∈(﹣∞,2)時,f(x)﹣4的值為負數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),正實數(shù)a,b,c是公差為正數(shù)的等差數(shù)列,且滿足.若實數(shù)d是方程的一個解,那么下列三個判斷:①d<a;②d<b;③d<c中有可能成立的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三角形的三邊長是公差為2的等差數(shù)列,且最大角的正弦值為,則這個三角形的周長是( )
A. 18 B. 15 C. 21 D. 24
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若樣本平均數(shù)是4,方差是2,則另一樣本的平均數(shù)和方差分別為( )
A. 12,2 B. 14,6 C. 12,8 D. 14,18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形與梯形全等, , , , , , 為中點.
(Ⅰ)證明: 平面
(Ⅱ)點在線段上(端點除外),且與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某中學(xué)高中某學(xué)科競賽中,該中學(xué)100名考生的參賽成績統(tǒng)計如圖所示.
(1)求這100名考生的競賽平均成績(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);
(2)記70分以上為優(yōu)秀,70分及以下為合格,結(jié)合頻率分布直方圖完成下表,并判斷是否有99%的把握認為該學(xué)科競賽成績與性別有關(guān)?
合格 | 優(yōu)秀 | 合計 | |
男生 | 18 | ||
女生 | 25 | ||
合計 | 100 |
附:.
0.050 | 0.010 | 0.005 | |
3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上的一動點到右焦點的最短距離為,且右焦點到右準線的距離等于短半軸的長.
(1)求橢圓的方程;
(2)設(shè)是橢圓上關(guān)于軸對稱的任意兩個不同的點,連接交橢圓于另一點,證明直線與軸相交于定點;
(3)在(2)的條件下,過點的直線與橢圓交于兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2 .
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個零點,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com