【題目】已知數(shù)列為正項(xiàng)的遞增等比數(shù)列,,記數(shù)列的前n項(xiàng)和為,則使不等式2018成立的最大正整數(shù)n的值為( )
A. 5 B. 6 C. 7 D. 8
【答案】B
【解析】
設(shè)正項(xiàng)的遞增等比數(shù)列{an}的公比為q>1,由a1+a5=82,a2a4=81=a1a5,聯(lián)立解得a1,a5.解得q.可得an.利用等比數(shù)列的求和公式可得數(shù)列的前n項(xiàng)和為Tn.代入不等式,即可得出結(jié)果.
設(shè)正項(xiàng)的遞增等比數(shù)列{an}的公比為q>1,∵a1+a5=82,a2a4=81=a1a5,
聯(lián)立解得a1=1,a5=81.
∴q4=81,解得q=3.
∴an=3n﹣1.
∴數(shù)列的前n項(xiàng)和為Tn=2
=223(1).
則不等式化為:20181,即3n<2018.
∵36=729,37=2187.
∴使不等式成立的最大正整數(shù)的值為6.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)到點(diǎn), 及到直線的距離都相等,如果這樣的點(diǎn)恰好只有一個,那么實(shí)數(shù)的值是( )
A. B. C. 或 D. 或
【答案】D
【解析】試題分析:由題意知在拋物線上,設(shè),則有,化簡得,當(dāng)時,符合題意;當(dāng)時,,有,,則,所以選D.
考點(diǎn):1、點(diǎn)到直線的距離公式;2、拋物線的性質(zhì).
【方法點(diǎn)睛】本題考查拋物線的概念、性質(zhì)以及數(shù)形結(jié)合思想,屬于中檔題,到點(diǎn)和直線的距離相等,則的軌跡是拋物線,再由直線與拋物線的位置關(guān)系可求;拋物線的定義是解決物線問題的基礎(chǔ),它能將兩種距離(拋物線上的點(diǎn)到到焦點(diǎn)的距離、拋物線上的點(diǎn)到準(zhǔn)線的距離)進(jìn)行等量轉(zhuǎn)化,如果問題中涉及拋物線的焦點(diǎn)和準(zhǔn)線,又能與距離聯(lián)系起來,那么用拋物線的定義就能解決.
【題型】單選題
【結(jié)束】
13
【題目】在極坐標(biāo)系中,已知兩點(diǎn), ,則, 兩點(diǎn)間的距離為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,底面為菱形,且,E為的中點(diǎn).
(1)求證:平面平面;
(2)棱上是否存在點(diǎn)F,使得平面?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線: 與圓相交的弦長等于橢圓: ()的焦距長.
(1)求橢圓的方程;
(2)已知為原點(diǎn),橢圓與拋物線()交于、兩點(diǎn),點(diǎn)為橢圓上一動點(diǎn),若直線、與軸分別交于、兩點(diǎn),求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程是 (是參數(shù), ),直線的參數(shù)方程是 (是參數(shù)),曲線與直線有一個公共點(diǎn)在軸上,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系
(1)求曲線的極坐標(biāo)方程;
(2)若點(diǎn),,在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時,求函數(shù)的極值;
(2)當(dāng)時,若不等式在時恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的離心率為,其左頂點(diǎn)在圓上.
(1)求橢圓的方程;
(2)直線與橢圓的另一個交點(diǎn)為,與圓的另一個交點(diǎn)為.
當(dāng)時,求直線的斜率;
是否存在,使?若存在,求出直線的斜率;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com