【題目】據(jù)氣象中心觀察和預測:發(fā)生于甲地的沙塵暴一直向正南方向移動,其移動速度與時間的函數(shù)圖象圖所示,過線段上一點作橫軸的垂線,梯形在直線左側(cè)部分的面積即為內(nèi)沙塵暴所經(jīng)過的路程.

1 時,求的值;

2)將變化的規(guī)律用數(shù)學關系式表示出來;

3)若乙城位于甲地正南方向,且距甲地,試判斷這場沙塵暴是否會侵襲到乙城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到乙城?如果不會,請說明理由.

【答案】1;(2;(3)會,.

【解析】

1)作出圖形,設直線分別交直線、于點,可知的值為直角梯形的面積,進而得解;

2)分、三種情況討論,分析直線左側(cè)圖形的形狀,計算出其面積,即為關于的函數(shù)表達式;

3)分、三種情況解方程,求出值,即為所求時間.

1)設直線分別交直線、于點、,則,,,

的值為直角梯形的面積,所以,

(2)當時,此時,(如圖);

時,此時,(如圖),

時,、的坐標分別為,

直線的解析式為點坐標為,(如圖.

綜上,

3)沙塵暴會侵襲到乙城.

時,

時,;

時,令,解得,

,.

所以沙塵暴發(fā)生后侵襲到乙城.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出以下關于線性方程組解的個數(shù)的命題.

①,②,③,,

1)方程組①可能有無窮多組解;

2)方程組②可能有且只有兩組不同的解;

3)方程組③可能有且只有唯一一組解;

4)方程組④可能有且只有唯一一組解.

其中真命題的序號為________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列同時滿足:①對于任意的正整數(shù), 恒成立;②對于給定的正整數(shù) 對于任意的正整數(shù)恒成立,則稱數(shù)列是“數(shù)列”.

(1)已知判斷數(shù)列是否為“數(shù)列”,并說明理由;

(2)已知數(shù)列是“數(shù)列”,且存在整數(shù),使得, , , 成等差數(shù)列,證明: 是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心C在直線上的圓過兩點,.

1)求圓C的方程;

2)若直線與圓C相交于A,B兩點,①當時,求AB的方程;②在y軸上是否存在定點M,使,若存在,求出M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列,滿足:對任意正整數(shù),都有,成等差數(shù)列,,,成等比數(shù)列,且,

)求證:數(shù)列是等差數(shù)列;

)求數(shù)列,的通項公式;

)設=++…+,如果對任意的正整數(shù),不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是相似橢圓,并將三角形的相似比稱為橢圓的相似比.已知橢圓

1)若橢圓,判斷是否相似?如果相似,求出的相似比;如果不相似,請說明理由;

2)寫出與橢圓相似且焦點在軸上、短半軸長為的橢圓的標準方程;若在橢圓上存在兩點、關于直線對稱,求實數(shù)的取值范圍;

3)如圖:直線與兩個相似橢圓分別交于點和點,試在橢圓和橢圓上分別作出點和點(非橢圓頂點),使組成以為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學在高二下學期開設四門數(shù)學選修課,分別為《數(shù)學史選講》.《球面上的幾何》.《對稱與群》.《矩陣與變換》.現(xiàn)有甲.乙.丙.丁四位同學從這四門選修課程中選修一門,且這四位同學選修的課程互不相同,下面關于他們選課的一些信息:①甲同學和丙同學均不選《球面上的幾何》,也不選《對稱與群》:②乙同學不選《對稱與群》,也不選《數(shù)學史選講》:③如果甲同學不選《數(shù)學史選講》,那么丁同學就不選《對稱與群》.若這些信息都是正確的,則丙同學選修的課程是(  )

A. 《數(shù)學史選講》B. 《球面上的幾何》C. 《對稱與群》D. 《矩陣與變換》

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設整數(shù)是區(qū)間中的不同整數(shù).證明:集合有這樣的子集存在,它的所有元素之和能被整除.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

是函數(shù)的極值點,1是函數(shù)的一個零點,求的值;

時,討論函數(shù)的單調(diào)性;

若對任意,都存在,使得成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案