【題目】已知函數(shù)(),若不等式對(duì)任意實(shí)數(shù)恒成立,則實(shí)數(shù)的取值范圍是( )
A.B.
C.D.
【答案】D
【解析】
根據(jù)題意,分析可得函數(shù)f(x)為奇函數(shù)且為增函數(shù),進(jìn)而可以將原問題轉(zhuǎn)化為m對(duì)任意實(shí)數(shù)t≥1恒成立,由基本不等式的性質(zhì)分析可得有最小值,進(jìn)而分析可得m的取值范圍.
根據(jù)題意,函數(shù)f(x)=x3+3x,其定義域?yàn)?/span>R,關(guān)于原點(diǎn)對(duì)稱,
有f(﹣x)=﹣(x3+3x)=﹣f(x),則f(x)為奇函數(shù),
又由f′(x)=3x2+3>0,則f(x)為增函數(shù),
若不等式f(2m+mt2)+f(4t)<0對(duì)任意實(shí)數(shù)t≥1恒成立,
則f(2m+mt2)<﹣f(4t),即2m+mt2<﹣4t對(duì)任意實(shí)數(shù)t≥1恒成立,
2m+mt2<﹣4tm,即m,
又由t≥1,則t2,則有最小值,當(dāng)且僅當(dāng)時(shí)等號(hào)成立
若m對(duì)任意實(shí)數(shù)t≥1恒成立,必有m;
即m的取值范圍為(﹣∞,);
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程(本題滿分10分)
在平面直角坐標(biāo)系中,將曲線向左平移2個(gè)單位,再將得到的曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,的極坐標(biāo)方程為.
(1)求曲線的參數(shù)方程;
(2)已知點(diǎn)在第一象限,四邊形是曲線的內(nèi)接矩形,求內(nèi)接矩形周長的最大值,并求周長最大時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘時(shí)期,人們認(rèn)為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是(≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是.若某人滿足上述兩個(gè)黃金分割比例,且腿長為105cm,頭頂至脖子下端的長度為26 cm,則其身高可能是
A. 165 cmB. 175 cmC. 185 cmD. 190cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上兩點(diǎn)、,焦點(diǎn)滿足,線段的垂直平分線過.
(1)求拋物線的方程;
(2)過點(diǎn)作直線,使得拋物線上恰有三個(gè)點(diǎn)到直線的距離都為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某行業(yè)主管部門為了解本行業(yè)中小企業(yè)的生產(chǎn)情況,隨機(jī)調(diào)查了100個(gè)企業(yè),得到這些企業(yè)第一季度相對(duì)于前一年第一季度產(chǎn)值增長率y的頻數(shù)分布表.
的分組 | |||||
企業(yè)數(shù) | 2 | 24 | 53 | 14 | 7 |
(1)分別估計(jì)這類企業(yè)中產(chǎn)值增長率不低于40%的企業(yè)比例、產(chǎn)值負(fù)增長的企業(yè)比例;
(2)求這類企業(yè)產(chǎn)值增長率的平均數(shù)與標(biāo)準(zhǔn)差的估計(jì)值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).(精確到0.01)
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當(dāng)直線l被圓C截得的弦長為時(shí),求
(Ⅰ)a的值;
(Ⅱ)求過點(diǎn)(3,5)并與圓C相切的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當(dāng)直線l被圓C截得的弦長為時(shí),求
(Ⅰ)a的值;
(Ⅱ)求過點(diǎn)(3,5)并與圓C相切的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是正方形,PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn).
(1)證明:平面PAB⊥平面PAD;
(2)求二面角P﹣AB﹣D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】男運(yùn)動(dòng)員名,女運(yùn)動(dòng)員名,其中男女隊(duì)長各人,選派人外出比賽,在下列情形中各有多少種選派方法.
(1)任選人
(2)男運(yùn)動(dòng)員名,女運(yùn)動(dòng)員名
(3)至少有名女運(yùn)動(dòng)員
(4)隊(duì)長至少有一人參加
(5)既要有隊(duì)長,又要有女運(yùn)動(dòng)員
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com