【題目】如果函數(shù)f(x)對其定義域內(nèi)的兩個實(shí)數(shù)x1、x2 , 都滿足不等式 ,則稱函數(shù)f(x)在其定義域內(nèi)具有性質(zhì)M.給出下列函數(shù):① ;②y=x2;③y=2x;④y=log2x.其中具有性質(zhì)M的是( )
A.①④
B.②③
C.③④
D.①②③④
【答案】B
【解析】解:函數(shù)f(x)對其定義域內(nèi)的任意兩個實(shí)數(shù)x1 , x2都滿足不等式 ,則稱函數(shù)f(x)在定義域上具有性質(zhì)M,(為下凸函數(shù)).
由函數(shù)的圖象可知:②y=x2;③y=2x . 其中具有性質(zhì)M.
故選B.
【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識點(diǎn),需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= 是定義在(﹣∞,+∞)上的奇函數(shù),且f( )= .
(1)求實(shí)數(shù)a、b,并確定函數(shù)f(x)的解析式;
(2)判斷f(x)在(﹣1,1)上的單調(diào)性,并用定義證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)在(﹣∞,0)上單調(diào)遞減,且f(2)=0,則不等式(x﹣1)f(x﹣1)>0的解集是( )
A.(﹣3,﹣1)
B.(﹣1,1)∪(1,3)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,1)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=2x-.
(Ⅰ)若f(x)=,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若對任意m,n∈[﹣1,1],m+n≠0,都有 .
(1)用定義證明函數(shù)f(x)在定義域上是增函數(shù);
(2)若 ,求實(shí)數(shù)a的取值范圍;
(3)若不等式f(x)≤(1﹣2a)t+2對所有和x∈[﹣1,1],a∈[﹣1,1]都恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠用鮮牛奶在某臺設(shè)備上生產(chǎn)A,B兩種奶制品.生產(chǎn)1噸A產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時,獲利1 000元;生產(chǎn)1噸B產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時,獲利1 200元.要求每天B產(chǎn)品的產(chǎn)量不超過A產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)A,B兩種產(chǎn)品時間之和不超過12小時.假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個隨機(jī)變量,其分布列為
W | 12 | 15 | 18 |
P | 0.3 | 0.5 | 0.2 |
該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利Z(單位:元)是一個隨機(jī)變量.
(I)求Z的分布列和均值;
(II)若每天可獲取的鮮牛奶數(shù)量相互獨(dú)立,求3天中至少有1天的最大獲利超過10 000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過圓O1、圓O2交點(diǎn)的直線的直角坐標(biāo)方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,已知曲線 與 ,求:
(1)兩曲線(含直線)的公共點(diǎn) P 的極坐標(biāo)
(2)過點(diǎn) P ,被曲線 截得的弦長為 的直線的極坐標(biāo)方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A , B , C是三個觀察站,A在B的正東,兩地相距6km,C在B的北偏西30°,兩地相距4km,在某一時刻,A觀察站發(fā)現(xiàn)某種信號,并知道該信號的傳播速度為1km/s,4s后B , C兩個觀察站同時發(fā)現(xiàn)這種信號,在以過A , B兩點(diǎn)的直線為x軸,以AB的垂直平分線為y軸建立的平面直角坐標(biāo)系中,指出發(fā)出這種信號的P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com