【題目】已知拋物線的焦點為,軸上的點.

(1)當時,過點作直線相切,求切線的方程;

(2)存在過點且傾斜角互補的兩條直線,,若,分別交于,,四點,且的面積相等,求實數(shù)的取值范圍.

【答案】(1) 切線的方程為;(2) 的取值范圍為.

【解析】分析:(1)設切點為,再求切線的斜率和切點,最后寫出直線的點斜式方程化簡即得解. (2)先求出的面積為,的面積為.再令它們想到得到找到a的范圍.

詳解:(1)設切點為,則

點處的切線方程為.

過點,∴,解得.

時,切線的方程為.

(2)設直線的方程為,代入

, ①

,得, ②

由題意得,直線的方程為,

同理可得,即, ③

②×③得,∴. ④

,,則.

.點的距離為,

的面積為.

同理的面積為.

由已知得,

化簡得, ⑤

欲使⑤有解:則,∴.

,得,∴.

綜上,的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了了解學生使用手機的情況,分別在高一和高二兩個年級各隨機抽取了100名學生進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學生日均使用手機時間的頻數(shù)分布表和頻率分布直方圖,將使用手機時間不低于80分鐘的學生稱為“手機迷”.

學生日均使用手機時間的頻數(shù)分布表

時間分組

頻數(shù)

[0,20

12

[20,40

20

[40,60

24

[60,80

18

[80,100

22

[100,120]

4

1將頻率視為概率,估計哪個年級的學生是“手機迷”的概率大?請說明理由.

2在高的抽查中,已知隨機抽到的女生共有55名,其中10名為“手機迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你有多大的把握認為“手機迷”與性別有關?

非手機迷

手機迷

合計

合計

附:隨機變量其中為樣本總量

參考數(shù)據(jù)

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于x的不等式ax23x+4b的解集為[a,b],則ba________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標坐標系中,曲線的參數(shù)方程為為參數(shù)),以直角坐標系的原點為極點,以軸的正半軸為極軸建立極坐標系,已知直線的極坐標方程為.

(1)求曲線的普通方程;

(2)若與曲線相切,且與坐標軸交于兩點,求以為直徑的圓的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列的公差為,前項和為,記,則數(shù)列的前項和是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某四棱錐的三視圖如圖所示,該四棱錐的四個側(cè)面的面積中最大的是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)用籬笆圍一個面積為的矩形菜園,當這個矩形的邊長為多少時,所用籬笆最短?最短籬笆的長度是多少?

2)用一段長為的籬笆圍成一個矩形菜園,當這個矩形的邊長為多少時,菜園的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是滿足下列條件的集合:①,;②若,則;③若,則

1)判斷是否正確,說明理由;

2)證明:的充分條件;

3)證明:若,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一個“蝴蝶形圖案(陰影區(qū)域)”,其中是過拋物線的兩條互相垂直的弦(點在第二象限),且交于點,點軸上一點,,其中為銳角

(1)設線段的長為,將表示為關于的函數(shù)

(2)求“蝴蝶形圖案”面積的最小值,并指出取最小值時的大小

查看答案和解析>>

同步練習冊答案