已知?jiǎng)狱c(diǎn)P在橢圓
x2
25
+
y2
16
=1上,若A點(diǎn)坐標(biāo)為(3,0),且|
AM
|=1,且
PM
AM
=0,則|
PM
|的最小值是(  )
A、
2
B、
3
C、2
D、3
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由題設(shè)條件,結(jié)合向量的性質(zhì),推導(dǎo)出|
PM
|2=|
AP
|2-|
AM
|2,再由|
AP
|越小,|
PM
|越小,能求出|
PM
|最小值.
解答: 解:∵
PM
AM
=0,∴
PM
AM
=0,
∴|
PM
|2=|
AP
|2-|
AM
|2
∵|
AM
|=1,∴|
AM
|2=1,
∴|
PM
|2=|
AP
|2-|
AM
|2=|
AP
|2-1,
∵|
AM
|=1,
∴點(diǎn)M的軌跡為以為以點(diǎn)A為圓心,1為半徑的圓,
∵|
PM
|2=|
AP
|2-1,|
AP
|越小,|
PM
|越小,
結(jié)合圖形知,當(dāng)P點(diǎn)為橢圓的右頂點(diǎn)時(shí),
|
AP
|取最小值a-c=5-3=2,
∴|
PM
|最小值是
4-1
=
3

故選:B.
點(diǎn)評(píng):本題考查橢圓上的線段長(zhǎng)的最小值的求法,解題時(shí)要認(rèn)真審題,要熟練掌握橢圓的性質(zhì),是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
5
4
-sin2x-3cosx的最小值是( 。
A、-
7
4
B、-2
C、
1
4
D、-
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
9
2
B、
7
2
C、3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=x2•ex,則y′等于( 。
A、x2ex+2x
B、2xex
C、(2x+x2)ex
D、(x+x2)•ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的S值為64則“  ”處應(yīng)填( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(0,-1),B(2,2),C(4,-6),則
AB
AC
方向上的投影為( 。
A、
7
41
B、-
7
41
C、
7
13
D、-
7
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二進(jìn)制數(shù)111111(2)化成十進(jìn)制數(shù)的值是( 。
A、63B、62C、64D、61

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,且拋物線上有一點(diǎn)P(4,m)到焦點(diǎn)的距離為5.
(1)求拋物線C的方程;
(2)已知點(diǎn)A(4,0),M是拋物線上除頂點(diǎn)外的動(dòng)點(diǎn),是否存在垂直于x軸的直線l被以MA為直徑的圓所截得的弦長(zhǎng)恒為定值?如果存在,求出l的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某漁輪在航行中不幸遇險(xiǎn),發(fā)出呼救信號(hào),我海軍艦艇在A處獲悉后,測(cè)得該漁輪在北偏東45°、距離為10海里的C處,并測(cè)得漁輪正沿南偏東75°的方向、以每小時(shí)9海里的速度向附近的小島靠攏.我海軍艦艇立即以每小時(shí)21海里的速度沿直線方向前去營(yíng)救;則艦艇靠近漁輪所需的時(shí)間是多少小時(shí)?

查看答案和解析>>

同步練習(xí)冊(cè)答案