已知函數(shù)f(x)=x3-ax2+3x,且x=3是f(x)的極值點(diǎn).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求函數(shù)圖象y=f(x)在點(diǎn)P(1,f(1))處的切線l的方程;
(Ⅲ)求f(x)在[1,5]上的最小值和最大值.

解:(Ⅰ)f'(x)=3x2-2ax+3,因?yàn)閒'(3)=0,即27-6a+3=0,所以a=5(4分)
(Ⅱ) 由f(x)=x3-5x2+3x,f'(x)=3x2-10x+3,得切點(diǎn)P(1,-1),切線l的斜率是k=-4,于是l的方程是y-(-1)=-4(x-1)即4x+y-3=0(8分)
(Ⅲ)令f'(x)=0,x∈[1,5],解得x=3(9分)
當(dāng)x變化時(shí),f'(x)、f(x)的變化情況如下表
x1(1,3)3(3,5)5
f'(x)-0+
f(x)-1極小值
-9
15 (12分)
因此,當(dāng)x=3時(shí),f(x)在區(qū)間[1,5]上取得最小值f(3)=-9;
當(dāng)x=5時(shí),f(x)在區(qū)間[1,5]上取得最大值f(5)=15(14分)
分析:(Ⅰ)求出f′(x)并令其=0得到方程,把x=3代入求出a即可;
(Ⅱ)首先求出P點(diǎn)的坐標(biāo),然后根據(jù)導(dǎo)函數(shù)求出斜率,即可得出切線方程;
(Ⅲ)由(1)求出函數(shù)的單調(diào)區(qū)間,可以運(yùn)用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而求出函數(shù)f(x)在[1,5]上的最大值和最小值.
點(diǎn)評:題主要考查多項(xiàng)式函數(shù)的導(dǎo)數(shù),切線方程、函數(shù)單調(diào)性的判定,函數(shù)最值,函數(shù)、方程等基礎(chǔ)知識,考查運(yùn)算求解能力、及分析與解決問題的能力,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案