在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知A=
π
6
,bcosC-ccosB=2a.
(1)求B和C;
(2)若a=2,求△ABC的面積.
考點(diǎn):正弦定理
專題:解三角形
分析:(1)根據(jù)已知條件以及正弦定理可得sinB•cosC-sinC•cosB=2sinA=1,從而得到B-C=
π
2
,結(jié)合B+C=
6
即可求出B,C的值.
(2)根據(jù)(1)以及正弦定理求出b=2
3
,利用三角形的面積公式即可得到△ABC的面積.
解答: 解:(1)∵bcosC-ccosB=2a,
由用正弦定理得
sinB•cosC-sinC•cosB=2sinA=1,
∴sin(B-C)=1.
∴B-C=
π
2

∵A=
π
6

∴B+C=
6
,
解得B=
3
,C=
π
6

(2)由(1)知,B=
3
,C=
π
6

 由正弦定理得,
b=
asinB
sinA
=
2sin
3
sin
π
6
=2
3

∴△ABC的面積為
S=
1
2
absinC
=
1
2
×2×2
3
×
1
2
=
3
點(diǎn)評(píng):本題考查正弦定理及相關(guān)知識(shí)是應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,|
b
|=2
a
b
=1
,若
a
-
c
b
-
c
的夾角為60°,則|
c
|
的最大值為( 。
A、
7
2
+1
B、
3
C、
7
+1
D、
3
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x+
π
2
)為定義在R上的偶函數(shù),且當(dāng)x≥
π
2
時(shí),f(x)=(
1
2
x+sinx,則下列選項(xiàng)正確的是(  )
A、f(3)<f(1)<f(2)
B、f(2)<f(1)<f(3)
C、f(2)<f(3)<f(1)
D、f(3)<f(2)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2=ay的準(zhǔn)線方程是y=1,則實(shí)數(shù)a的值為( 。
A、4
B、-4
C、
1
4
D、-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-(a2+a+1)x+a(a2+1)>0},B={y|y=
1
2
x2-x+
5
2
,0≤x≤3}
(1)若a=2時(shí),求(∁RA)∩B;
(2)若A∩B≠∅時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)甲,乙兩名運(yùn)動(dòng)員分別在100場(chǎng)比賽中的得分情況進(jìn)行統(tǒng)計(jì),做出甲的得分頻率分布直方圖如圖,列出乙的得分統(tǒng)計(jì)表如下:
分值 [0,10) [10,20) [20,30) [30,40)
場(chǎng)數(shù) 10 20 40 30
(1)估計(jì)甲在一場(chǎng)比賽中得分不低于20分的概率
(2)判斷甲,乙兩名運(yùn)動(dòng)員哪個(gè)成績(jī)更穩(wěn)定;(結(jié)論不要求證明)
(3)在乙所進(jìn)行的100場(chǎng)比賽中,按表格中個(gè)分值區(qū)間的場(chǎng)數(shù)分布采用分層抽樣法取出10場(chǎng)比賽,再從這10場(chǎng)比賽中隨機(jī)選出2場(chǎng)進(jìn)一步分析,記這2場(chǎng)比賽中得分不低于10分的場(chǎng)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|x2-mx+m2-19=0},B={x|x2-5x+6=0},若A⊆B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x(x∈R)可以表示為一個(gè)奇函數(shù)g(x)與一個(gè)偶函數(shù)h(x)之和,若不等式a•g(x)+h(2x)≥0對(duì)于x∈[2,3]恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是三內(nèi)角A,B,C的對(duì)邊,A=60°,b=1,△ABC的面積等于
3
,則a等于(  )
A、
13
B、
21
C、
2
13
3
D、
21
2

查看答案和解析>>

同步練習(xí)冊(cè)答案