8.橢圓4x2+y2=16的長軸長等于8.

分析 化橢圓方程為標準方程,求出長半軸長,則答案可求.

解答 解:由4x2+y2=16,得$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{16}=1$,
∴橢圓為焦點在y軸上的橢圓,
則a2=16,∴a=4.
∴橢圓4x2+y2=16的長軸長等于2a=2×4=8.
故答案為:8.

點評 本題考查橢圓的簡單性質(zhì),考查了橢圓的標準方程,是基礎(chǔ)的計算題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.解不等式組:$\left\{\begin{array}{l}{|x-3|≤5}\\{-{x}^{2}-x+6<0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列函數(shù)中滿足在(-∞,0)是單調(diào)遞增的是(  )
A.f(x)=$\frac{1}{x+2}$B.f(x)=-(x+1)2C.f(x)=1+2x2D.f(x)=-|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.定義區(qū)間[a,b]的區(qū)間長度為b-a,如圖是某圓拱形橋一孔圓拱的示意圖.這個圓的圓拱跨度AB=20m,拱高OP=4m,建造時每間隔4m需要用一根支柱支撐,求支柱A2P2的高度所處的區(qū)間[a,b].(要求區(qū)間長度為$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在直角坐標系xOy中,中心在原點O,焦點在x軸上的橢圓C上的點$(2\sqrt{2},1)$到兩焦點的距離之和為4$\sqrt{3}$.
(1)求橢圓C的方程;
(2)設點P在橢圓C上,F(xiàn)1、F2為橢圓C的左右焦點,若∠F1PF2=$\frac{π}{3}$,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若cosα>0,則( 。
A.tanαsinα≥0B.sin2α≤0C.sinα≤0D.cos2α<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=blnx-$\frac{1}{x}$,g(x)=-ax2+b,函數(shù)F(x)=$\frac{a+b}f(x)-g(x)+\frac{a+b}{x}$(a,b∈R,且b≠0),曲線y=f(x)在點(1,f(1))處的切線與直線x+2y=0垂直.
(1)求b的值;
(2)討論函數(shù)F(x)的單調(diào)性;
(3)設a≤-2,證明:對任意x1,x2∈(0,+∞),|F(x1)-F(x2)|≥4|x1-x2|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列說法中正確的個數(shù)有( 。
①兩平面平行,夾在兩平面間的平行線段相等;
②兩平面平行,夾在兩平面間的相等的線段平行;
③兩條直線被三個平行平面所截,截得的線段對應成比例;
④如果夾在兩平面間的三條平行線段相等,那么這兩個平面平行.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設命題p:實數(shù)x滿足x2-4ax+3a2<0,命題q:實數(shù)x滿足log2x≤2.
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若a>0且?q是?p的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案