精英家教網 > 高中數學 > 題目詳情
平面上動點P到點F(1,0)的距離等于它到直線x=-1的距離.
(Ⅰ)求點P的軌跡方程;
(Ⅱ)過點M(4,0)的直線與點P的軌跡交于A,B兩點,求
OA
OB
的值.
(Ⅰ)設P(x,y),由已知平面上動點P到點F(1,0)的距離等于它到直線x=-1的距離,
∴點P滿足拋物線定義,點P的軌跡為焦點在x軸正半軸的拋物線,p=2,
∴點P的軌跡方程為y2=4x.              …(5分)
(Ⅱ)若直線AB的斜率不存在,則AB直線方程為:x=4,
A(4,4),B(4,-4),
OA
OB
=4×4-4×4=0

若直線AB的斜率存在,設為k,
則AB直線方程為:y=k(x-4),設A(x1,y1),B(x2,y2
y=k(x-4)
y2=4x
得k2x2-(8k2+4)x+16k2=0,
則k≠0,△=64k2+16>0恒成立,
x1+x2=
8k2+4
k2
x1x2=16
,
y1y2=k(x1-4)k(x2-4)=k2[x1x2-4(x1+x2)+16]=-16,
OA
OB
=x1x2+y1y2=16-16=0

綜上,
OA
OB
=0
.              …(12分)
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖所示,在平面直角坐標系中,設橢圓,其中,過橢圓內一點的兩條直線分別與橢圓交于點,且滿足,,其中為正常數. 當點恰為橢圓的右頂點時,對應的.
(1)求橢圓的離心率;
(2)求的值;
(3)當變化時,是否為定值?若是,請求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

動點M在曲線x2+y2=1上移動,M和定點B(3,1)連線的中點為P,則P點的軌跡方程為:______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xoy中,設點F(0,p)(p>0),直線l:y=-p,點p在直線l上移動,R是線段PF與x軸的交點,過R、P分別作直線l1、l2,使l1⊥PF,l2⊥ll1∩l2=Q.
(Ⅰ)求動點Q的軌跡C的方程;
(Ⅱ)在直線l上任取一點M做曲線C的兩條切線,設切點為A、B,求證:直線AB恒過一定點;
(Ⅲ)對(Ⅱ)求證:當直線MA,MF,MB的斜率存在時,直線MA,MF,MB的斜率的倒數成等差數列.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,定點A和B都在平面α內,定點P∉α,PB⊥α,C是α內異于A和B的動點,且PC⊥AC.那么,動點C在平面α內的軌跡是( 。
A.一條線段,但要去掉兩個點
B.一個圓,但要去掉兩個點
C.一個橢圓,但要去掉兩個點
D.半圓,但要去掉兩個點

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

動圓C與定圓C1:(x+3)2+y2=9,C2:(x-3)2+y2=1都外切,求動圓圓心C的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在同一直角坐標系中,經過伸縮變換
x′=5x
y′=3y
后,曲線C變?yōu)榍x′2+y′2=1,則曲線C的方程為( 。
A.25x2+9y2=1B.9x2+25y2=1C.25x+9y=1D.
x2
25
+
y2
9
=1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設直線y=ax+b與雙曲線3x2-y2=1交于A、B,且以AB為直徑的圓過原點,求點P(a,b)的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在圓x2+y2=4上任取一點P,過點P作x軸的垂線段PD,D為垂足.當點P在圓上運動時,線段PD的中點M的軌跡是(  )
A.橢圓B.雙曲線C.拋物線D.圓

查看答案和解析>>

同步練習冊答案